These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 34264518)
1. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Mansouri N; Al-Sarawi S; Losic D; Mazumdar J; Clark J; Gronthos S; O'Hare Doig R Biotechnol Bioeng; 2021 Nov; 118(11):4217-4230. PubMed ID: 34264518 [TBL] [Abstract][Full Text] [Related]
2. Effect of graphene oxide/ poly-L-lactic acid composite scaffold on the biological properties of human dental pulp stem cells. Qiu Z; Lin X; Zou L; Fu W; Lv H BMC Oral Health; 2024 Apr; 24(1):413. PubMed ID: 38575940 [TBL] [Abstract][Full Text] [Related]
3. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells. Demarco FF; Casagrande L; Zhang Z; Dong Z; Tarquinio SB; Zeitlin BD; Shi S; Smith AJ; Nör JE J Endod; 2010 Nov; 36(11):1805-11. PubMed ID: 20951292 [TBL] [Abstract][Full Text] [Related]
4. Graphene Oxide Quantum Dots-Preactivated Dental Pulp Stem Cells/GelMA Facilitates Mitophagy-Regulated Bone Regeneration. Yan X; An N; Zhang Z; Qiu Q; Yang D; Wei P; Zhang X; Qiu L; Guo J Int J Nanomedicine; 2024; 19():10107-10128. PubMed ID: 39381026 [TBL] [Abstract][Full Text] [Related]
5. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
6. The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. Ling LE; Feng L; Liu HC; Wang DS; Shi ZP; Wang JC; Luo W; Lv Y J Biomed Mater Res A; 2015 May; 103(5):1732-45. PubMed ID: 25131439 [TBL] [Abstract][Full Text] [Related]
7. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Sun HH; Chen B; Zhu QL; Kong H; Li QH; Gao LN; Xiao M; Chen FM; Yu Q Biomaterials; 2014 Nov; 35(35):9459-72. PubMed ID: 25172527 [TBL] [Abstract][Full Text] [Related]
8. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy. Zhang J; Lu X; Feng G; Gu Z; Sun Y; Bao G; Xu G; Lu Y; Chen J; Xu L; Feng X; Cui Z Cell Tissue Res; 2016 Oct; 366(1):129-42. PubMed ID: 27147262 [TBL] [Abstract][Full Text] [Related]
9. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. Amiryaghoubi N; Noroozi Pesyan N; Fathi M; Omidi Y Int J Biol Macromol; 2020 Nov; 162():1338-1357. PubMed ID: 32561280 [TBL] [Abstract][Full Text] [Related]
10. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Zheng K; Feng G; Zhang J; Xing J; Huang D; Lian M; Zhang W; Wu W; Hu Y; Lu X; Feng X Int J Neurosci; 2021 Jul; 131(7):625-633. PubMed ID: 32186218 [TBL] [Abstract][Full Text] [Related]
11. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration. Bousnaki M; Bakopoulou A; Papadogianni D; Barkoula NM; Alpantaki K; Kritis A; Chatzinikolaidou M; Koidis P J Mater Sci Mater Med; 2018 Jun; 29(7):97. PubMed ID: 29946796 [TBL] [Abstract][Full Text] [Related]
13. A Bilayered Poly (Lactic-Co-Glycolic Acid) Scaffold Provides Differential Cues for the Differentiation of Dental Pulp Stem Cells. Gangolli RA; Devlin SM; Gerstenhaber JA; Lelkes PI; Yang M Tissue Eng Part A; 2019 Feb; 25(3-4):224-233. PubMed ID: 29984629 [TBL] [Abstract][Full Text] [Related]
14. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. Radunovic M; De Colli M; De Marco P; Di Nisio C; Fontana A; Piattelli A; Cataldi A; Zara S J Biomed Mater Res A; 2017 Aug; 105(8):2312-2320. PubMed ID: 28380697 [TBL] [Abstract][Full Text] [Related]
15. Porous clinoptilolite-nano biphasic calcium phosphate scaffolds loaded with human dental pulp stem cells for load bearing orthopedic applications. Alshemary AZ; Pazarçeviren AE; Keskin D; Tezcaner A; Hussain R; Evis Z Biomed Mater; 2019 Aug; 14(5):055010. PubMed ID: 31362280 [TBL] [Abstract][Full Text] [Related]
16. Identification of key pathways in zirconia/dental pulp stem cell composite scaffold-mediated macrophage polarization through transcriptome sequencing. Liu B; He M; Chen B; Shuai Y; He X; Liu K; Li J; Jin L Biotechnol Genet Eng Rev; 2024 Oct; 40(2):833-857. PubMed ID: 36942591 [TBL] [Abstract][Full Text] [Related]
17. Dental Pulp Stem Cells in Customized 3D Nanofibrous Scaffolds for Regeneration of Peripheral Nervous System. Das S; Bellare JR Methods Mol Biol; 2020; 2125():157-166. PubMed ID: 30294747 [TBL] [Abstract][Full Text] [Related]
18. Functionalization of polycaprolactone scaffolds with hyaluronic acid and β-TCP facilitates migration and osteogenic differentiation of human dental pulp stem cells in vitro. Jensen J; Kraft DC; Lysdahl H; Foldager CB; Chen M; Kristiansen AA; Rölfing JH; Bünger CE Tissue Eng Part A; 2015 Feb; 21(3-4):729-39. PubMed ID: 25252795 [TBL] [Abstract][Full Text] [Related]
19. The effect of composition of calcium phosphate composite scaffolds on the formation of tooth tissue from human dental pulp stem cells. Zheng L; Yang F; Shen H; Hu X; Mochizuki C; Sato M; Wang S; Zhang Y Biomaterials; 2011 Oct; 32(29):7053-9. PubMed ID: 21722953 [TBL] [Abstract][Full Text] [Related]