These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 34264518)
21. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Wang J; Liu X; Jin X; Ma H; Hu J; Ni L; Ma PX Acta Biomater; 2010 Oct; 6(10):3856-63. PubMed ID: 20406702 [TBL] [Abstract][Full Text] [Related]
22. Influence of poly-L-lactic acid scaffold's pore size on the proliferation and differentiation of dental pulp stem cells. Conde CM; Demarco FF; Casagrande L; Alcazar JC; Nör JE; Tarquinio SB Braz Dent J; 2015; 26(2):93-8. PubMed ID: 25831096 [TBL] [Abstract][Full Text] [Related]
23. Preparation of PDA-GO/CS composite scaffold and its effects on the biological properties of human dental pulp stem cells. Li Y; Huang X; Fu W; Zhang Z; Xiao K; Lv H BMC Oral Health; 2024 Jan; 24(1):157. PubMed ID: 38297260 [TBL] [Abstract][Full Text] [Related]
24. A non-invasive monitoring of USPIO labeled silk fibroin/hydroxyapatite scaffold loaded DPSCs for dental pulp regeneration. Zhang W; Zheng Y; Liu H; Zhu X; Gu Y; Lan Y; Tan J; Xu H; Guo R Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109736. PubMed ID: 31349524 [TBL] [Abstract][Full Text] [Related]
25. 3D porous chitosan scaffolds suit survival and neural differentiation of dental pulp stem cells. Feng X; Lu X; Huang D; Xing J; Feng G; Jin G; Yi X; Li L; Lu Y; Nie D; Chen X; Zhang L; Gu Z; Zhang X Cell Mol Neurobiol; 2014 Aug; 34(6):859-70. PubMed ID: 24789753 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the Adherence of Dental Pulp Stem Cells on Two-Dimensional and Three-Dimensional Silk Fibroin-Based Biomaterials. Pecci-Lloret MP; Vera-Sánchez M; Aznar-Cervantes S; García-Bernal D; Sánchez RO; Pecci-Lloret MR; Moraleda JM; Cenis JL; Rodríguez-Lozano FJ J Craniofac Surg; 2017 Jun; 28(4):939-943. PubMed ID: 28230598 [TBL] [Abstract][Full Text] [Related]
27. Physico-chemical and biological characterization of synthetic and eggshell derived nanohydroxyapatite/carboxymethyl chitosan composites for pulp-dentin tissue engineering. Saravana Karthikeyan B; Madhubala MM; Rajkumar G; Dhivya V; Kishen A; Srinivasan N; Mahalaxmi S Int J Biol Macromol; 2024 Jun; 271(Pt 1):132620. PubMed ID: 38795888 [TBL] [Abstract][Full Text] [Related]
28. Human dental pulp stem cells differentiation into odontoblast and osteoblast-like cells on scaffolds contain bioactive materials. Ghawtha Khudhur G; Khalid Bakr D Cell Mol Biol (Noisy-le-grand); 2024 Jun; 70(6):135-141. PubMed ID: 38836669 [TBL] [Abstract][Full Text] [Related]
29. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. Mangano C; Paino F; d'Aquino R; De Rosa A; Iezzi G; Piattelli A; Laino L; Mitsiadis T; Desiderio V; Mangano F; Papaccio G; Tirino V PLoS One; 2011 Apr; 6(4):e18721. PubMed ID: 21494568 [TBL] [Abstract][Full Text] [Related]
31. 3D scaffolds of caprolactone/chitosan/polyvinyl alcohol/hydroxyapatite stabilized by physical bonds seeded with swine dental pulp stem cell for bone tissue engineering. Reyna-Urrutia VA; Estevez M; González-González AM; Rosales-Ibáñez R J Mater Sci Mater Med; 2022 Dec; 33(12):81. PubMed ID: 36484847 [TBL] [Abstract][Full Text] [Related]
32. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. Yang JW; Zhang YF; Sun ZY; Song GT; Chen Z J Biomater Appl; 2015 Aug; 30(2):221-9. PubMed ID: 25791684 [TBL] [Abstract][Full Text] [Related]
33. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Soares DG; Zhang Z; Mohamed F; Eyster TW; de Souza Costa CA; Ma PX Acta Biomater; 2018 Mar; 68():190-203. PubMed ID: 29294374 [TBL] [Abstract][Full Text] [Related]
34. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Ferroni L; Gardin C; Sivolella S; Brunello G; Berengo M; Piattelli A; Bressan E; Zavan B Int J Mol Sci; 2015 Mar; 16(3):4666-81. PubMed ID: 25739081 [TBL] [Abstract][Full Text] [Related]
35. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Menaa F; Abdelghani A; Menaa B J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559 [TBL] [Abstract][Full Text] [Related]
36. Development of new biocompatible 3D printed graphene oxide-based scaffolds. Belaid H; Nagarajan S; Teyssier C; Barou C; Barés J; Balme S; Garay H; Huon V; Cornu D; Cavaillès V; Bechelany M Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110595. PubMed ID: 32204059 [TBL] [Abstract][Full Text] [Related]
37. Progress in the use of dental pulp stem cells in regenerative medicine. Anitua E; Troya M; Zalduendo M Cytotherapy; 2018 Apr; 20(4):479-498. PubMed ID: 29449086 [TBL] [Abstract][Full Text] [Related]
38. Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway. Zhang H; Liu S; Zhou Y; Tan J; Che H; Ning F; Zhang X; Xun W; Huo N; Tang L; Deng Z; Jin Y Tissue Eng Part A; 2012 Apr; 18(7-8):677-91. PubMed ID: 21988658 [TBL] [Abstract][Full Text] [Related]
39. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. Itoh Y; Sasaki JI; Hashimoto M; Katata C; Hayashi M; Imazato S J Dent Res; 2018 Sep; 97(10):1137-1143. PubMed ID: 29702010 [TBL] [Abstract][Full Text] [Related]
40. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering. Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]