These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34264832)

  • 1. A Time-Delay Feedback Neural Network for Discriminating Small, Fast-Moving Targets in Complex Dynamic Environments.
    Wang H; Wang H; Zhao J; Hu C; Peng J; Yue S
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):316-330. PubMed ID: 34264832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical study of neural feedback roles in small target motion detection.
    Ling J; Wang H; Xu M; Chen H; Li H; Peng J
    Front Neurorobot; 2022; 16():984430. PubMed ID: 36203523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-Inspired Small Target Motion Detection With Spatio-Temporal Feedback in Natural Scenes.
    Wang H; Zhong Z; Lei F; Peng J; Yue S
    IEEE Trans Image Process; 2024; 33():451-465. PubMed ID: 38150349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attention and Prediction-Guided Motion Detection for Low-Contrast Small Moving Targets.
    Wang H; Zhao J; Wang H; Hu C; Peng J; Yue S
    IEEE Trans Cybern; 2023 Oct; 53(10):6340-6352. PubMed ID: 35533156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Directionally Selective Small Target Motion Detecting Visual Neural Network in Cluttered Backgrounds.
    Wang H; Peng J; Yue S
    IEEE Trans Cybern; 2020 Apr; 50(4):1541-1555. PubMed ID: 30296246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Visual System for Small Target Motion Detection Against Cluttered Moving Backgrounds.
    Wang H; Peng J; Zheng X; Yue S
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):839-853. PubMed ID: 31056526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial facilitation by a high-performance dragonfly target-detecting neuron.
    Nordström K; Bolzon DM; O'Carroll DC
    Biol Lett; 2011 Aug; 7(4):588-92. PubMed ID: 21270026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dragonfly Neurons Selectively Attend to Targets Within Natural Scenes.
    Evans BJE; O'Carroll DC; Fabian JM; Wiederman SD
    Front Cell Neurosci; 2022; 16():857071. PubMed ID: 35450210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the detection of moving targets in visual clutter inspired by insect physiology.
    Wiederman SD; Shoemaker PA; O'Carroll DC
    PLoS One; 2008 Jul; 3(7):e2784. PubMed ID: 18665213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
    Geurten BR; Nordström K; Sprayberry JD; Bolzon DM; O'Carroll DC
    J Exp Biol; 2007 Sep; 210(Pt 18):3277-84. PubMed ID: 17766305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths.
    Dunbier JR; Wiederman SD; Shoemaker PA; O'Carroll DC
    Front Neural Circuits; 2012; 6():79. PubMed ID: 23112764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Looming Spatial Localization Neural Network Inspired by MLG1 Neurons in the Crab
    Luan H; Fu Q; Zhang Y; Hua M; Chen S; Yue S
    Front Neurosci; 2021; 15():787256. PubMed ID: 35126038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized and Long-Lasting Adaptation in Dragonfly Target-Detecting Neurons.
    Schwarz MB; O'Carroll DC; Evans BJE; Fabian JM; Wiederman SD
    eNeuro; 2024 Sep; 11(9):. PubMed ID: 39256041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volitional control of anticipatory ocular pursuit responses under stabilised image conditions in humans.
    Barnes G; Goodbody S; Collins S
    Exp Brain Res; 1995; 106(2):301-17. PubMed ID: 8566195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature modulates the tuning properties of small target motion detector neurons in the dragonfly visual system.
    Hussaini MM; Evans BJE; O'Carroll DC; Wiederman SD
    Curr Biol; 2024 Sep; 34(18):4332-4337.e2. PubMed ID: 39232564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments.
    Bagheri ZM; Cazzolato BS; Grainger S; O'Carroll DC; Wiederman SD
    J Neural Eng; 2017 Aug; 14(4):046030. PubMed ID: 28704206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds.
    Fu Q; Yue S
    Biol Cybern; 2020 Oct; 114(4-5):443-460. PubMed ID: 32623517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of features in natural scenes by a dragonfly neuron.
    Wiederman SD; O'Carroll DC
    J Neurosci; 2011 May; 31(19):7141-4. PubMed ID: 21562276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature detection and the hypercomplex property in insects.
    Nordström K; O'Carroll DC
    Trends Neurosci; 2009 Jul; 32(7):383-91. PubMed ID: 19541374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.