These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 34265077)
1. Wolfberry-derived zeaxanthin dipalmitate delays retinal degeneration in a mouse model of retinitis pigmentosa through modulating STAT3, CCL2 and MAPK pathways. Liu F; Liu X; Zhou Y; Yu Y; Wang K; Zhou Z; Gao H; So KF; Vardi N; Xu Y J Neurochem; 2021 Sep; 158(5):1131-1150. PubMed ID: 34265077 [TBL] [Abstract][Full Text] [Related]
2. Zeaxanthin dipalmitate-enriched wolfberry extract improves vision in a mouse model of photoreceptor degeneration. Chen X; Zhang S; Yang L; Kong Q; Zhang W; Zhang J; Hao X; So KF; Xu Y PLoS One; 2024; 19(5):e0302742. PubMed ID: 38768144 [TBL] [Abstract][Full Text] [Related]
3. Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Guo C; Otani A; Oishi A; Kojima H; Makiyama Y; Nakagawa S; Yoshimura N Exp Eye Res; 2012 Nov; 104():39-47. PubMed ID: 23022404 [TBL] [Abstract][Full Text] [Related]
4. Different effects of valproic acid on photoreceptor loss in Rd1 and Rd10 retinal degeneration mice. Mitton KP; Guzman AE; Deshpande M; Byrd D; DeLooff C; Mkoyan K; Zlojutro P; Wallace A; Metcalf B; Laux K; Sotzen J; Tran T Mol Vis; 2014; 20():1527-44. PubMed ID: 25489226 [TBL] [Abstract][Full Text] [Related]
5. Neuroprotective effects of methyl 3,4 dihydroxybenzoate in a mouse model of retinitis pigmentosa. Zhang J; Xu D; Ouyang H; Hu S; Li A; Luo H; Xu Y Exp Eye Res; 2017 Sep; 162():86-96. PubMed ID: 28709891 [TBL] [Abstract][Full Text] [Related]
6. Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration. Wang K; Xiao J; Peng B; Xing F; So KF; Tipoe GL; Lin B Sci Rep; 2014 Dec; 4():7601. PubMed ID: 25535040 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse. Xiang Z; Bao Y; Zhang J; Liu C; Xu D; Liu F; Chen H; He L; Ramakrishna S; Zhang Z; Vardi N; Xu Y Neuropharmacology; 2018 Sep; 139():137-149. PubMed ID: 29940208 [TBL] [Abstract][Full Text] [Related]
9. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment. Barone I; Novelli E; Strettoi E Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227 [TBL] [Abstract][Full Text] [Related]
10. Intravitreal Injection of Proinsulin-Loaded Microspheres Delays Photoreceptor Cell Death and Vision Loss in the rd10 Mouse Model of Retinitis Pigmentosa. Isiegas C; Marinich-Madzarevich JA; Marchena M; Ruiz JM; Cano MJ; de la Villa P; Hernández-Sánchez C; de la Rosa EJ; de Pablo F Invest Ophthalmol Vis Sci; 2016 Jul; 57(8):3610-8. PubMed ID: 27391551 [TBL] [Abstract][Full Text] [Related]
11. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the rd10 Mouse Model. Ly A; Merl-Pham J; Priller M; Gruhn F; Senninger N; Ueffing M; Hauck SM J Proteome Res; 2016 Apr; 15(4):1350-9. PubMed ID: 26939627 [TBL] [Abstract][Full Text] [Related]
12. Laboratory evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Yoshida N; Ikeda Y; Notomi S; Ishikawa K; Murakami Y; Hisatomi T; Enaida H; Ishibashi T Ophthalmology; 2013 Jan; 120(1):e5-12. PubMed ID: 22986110 [TBL] [Abstract][Full Text] [Related]
13. Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. Zhao L; Li J; Fu Y; Zhang M; Wang B; Ouellette J; Shahi PK; Pattnaik BR; Watters JJ; Wong WT; Guo LW J Neuroinflammation; 2017 Jan; 14(1):14. PubMed ID: 28103888 [TBL] [Abstract][Full Text] [Related]
15. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. Peng B; Xiao J; Wang K; So KF; Tipoe GL; Lin B J Neurosci; 2014 Jun; 34(24):8139-50. PubMed ID: 24920619 [TBL] [Abstract][Full Text] [Related]
16. New Nrf2-Inducer Compound ITH12674 Slows the Progression of Retinitis Pigmentosa in the Mouse Model rd10. Campello L; Kutsyr O; Noailles A; Michalska P; Fernández-Sánchez L; Martínez-Gil N; Ortuño-Lizarán I; Sánchez-Sáez X; de Juan E; Lax P; León R; García AG; Cuenca N; Maneu V Cell Physiol Biochem; 2020 Feb; 54(1):142-159. PubMed ID: 32028545 [TBL] [Abstract][Full Text] [Related]
17. Sánchez-Cruz A; Méndez AC; Lizasoain I; de la Villa P; de la Rosa EJ; Hernández-Sánchez C Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360582 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional Profiling Identifies Upregulation of Neuroprotective Pathways in Retinitis Pigmentosa. Bielmeier CB; Roth S; Schmitt SI; Boneva SK; Schlecht A; Vallon M; Tamm ER; Ergün S; Neueder A; Braunger BM Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208383 [TBL] [Abstract][Full Text] [Related]
19. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Zabel MK; Zhao L; Zhang Y; Gonzalez SR; Ma W; Wang X; Fariss RN; Wong WT Glia; 2016 Sep; 64(9):1479-91. PubMed ID: 27314452 [TBL] [Abstract][Full Text] [Related]
20. Lycium Barbarum Polysaccharides Protect Retina in rd1 Mice During Photoreceptor Degeneration. Liu F; Zhang J; Xiang Z; Xu D; So KF; Vardi N; Xu Y Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):597-611. PubMed ID: 29372259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]