These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 34265152)
1. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
2. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Zhang Z; He L; Zhu C; Qian Y; Wen L; Jiang L Nat Commun; 2020 Feb; 11(1):875. PubMed ID: 32054863 [TBL] [Abstract][Full Text] [Related]
3. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039 [TBL] [Abstract][Full Text] [Related]
5. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
6. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion. Hu Y; Xiao H; Fu L; Liu P; Wu Y; Chen W; Qian Y; Zhou S; Kong XY; Zhang Z; Jiang L; Wen L Adv Mater; 2023 Jun; 35(24):e2301285. PubMed ID: 36930971 [TBL] [Abstract][Full Text] [Related]
7. Two-Dimensional Ti Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Ionic Selectivity and Osmotic Energy by Using an Ultrathin Zr-MOF-Based Heterogeneous Membrane with Trilayered Continuous Porous Structure. Yang ZJ; Yeh LH; Peng YH; Chuang YP; Wu KC Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202408375. PubMed ID: 38847272 [TBL] [Abstract][Full Text] [Related]
9. Advancing osmotic power generation by covalent organic framework monolayer. Yang J; Tu B; Zhang G; Liu P; Hu K; Wang J; Yan Z; Huang Z; Fang M; Hou J; Fang Q; Qiu X; Li L; Tang Z Nat Nanotechnol; 2022 Jun; 17(6):622-628. PubMed ID: 35469012 [TBL] [Abstract][Full Text] [Related]
10. Massively Enhanced Charge Selectivity, Ion Transport, and Osmotic Energy Conversion by Antiswelling Nanoconfined Hydrogels. Lin YC; Chen HH; Chu CW; Yeh LH Nano Lett; 2024 Sep; 24(37):11756-11762. PubMed ID: 39236070 [TBL] [Abstract][Full Text] [Related]
11. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640 [TBL] [Abstract][Full Text] [Related]
12. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting. Yang Y; Zhou S; Lv Z; Hung CT; Zhao Z; Zhao T; Chao D; Kong B; Zhao D J Am Chem Soc; 2024 Jul; 146(28):19580-19589. PubMed ID: 38977375 [TBL] [Abstract][Full Text] [Related]
13. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion. Zeng H; Yao C; Wu C; Wang D; Ma W; Wang J Small; 2024 Jun; 20(26):e2310811. PubMed ID: 38299466 [TBL] [Abstract][Full Text] [Related]
14. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti Liu C; Ye C; Zhang T; Tang J; Mao K; Chen L; Xue L; Sun J; Zhang W; Wang X; Xiong P; Wang G; Zhu J Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202315947. PubMed ID: 38059770 [TBL] [Abstract][Full Text] [Related]
15. Charge-Gradient Sulfonated Poly(ether ether ketone) Membrane with Enhanced Ion Selectivity for Osmotic Energy Conversion. Guo Y; Sun X; Ding S; Lu J; Wang H; Zhu Y; Jiang L ACS Nano; 2024 Mar; 18(9):7161-7169. PubMed ID: 38380884 [TBL] [Abstract][Full Text] [Related]
16. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206 [TBL] [Abstract][Full Text] [Related]
17. On-Water Surface Synthesis of Two-Dimensional Polymer Membranes for Sustainable Energy Devices. Ni F; Wang Z; Feng X Acc Chem Res; 2024 Aug; 57(16):2414-2427. PubMed ID: 39126386 [TBL] [Abstract][Full Text] [Related]
18. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes. Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J J Colloid Interface Sci; 2024 Nov; 673():365-372. PubMed ID: 38878371 [TBL] [Abstract][Full Text] [Related]
19. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937 [TBL] [Abstract][Full Text] [Related]
20. Commercial Nafion Membranes for Harvesting Osmotic Energy from Proton Gradients that Exceed the Commercial Goal of 5.0 W/m Hou Q; Dai Y; Zhang X; Xia F ACS Nano; 2024 May; 18(19):12580-12587. PubMed ID: 38696339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]