These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34265163)
1. [2.2]Paracyclophane-Based TCN-201 Analogs as GluN2A-Selective NMDA Receptor Antagonists. Rajan R; Schepmann D; Steigerwald R; Schreiber JA; El-Awaad E; Jose J; Seebohm G; Wünsch B ChemMedChem; 2021 Oct; 16(20):3201-3209. PubMed ID: 34265163 [TBL] [Abstract][Full Text] [Related]
2. GluN2A-Selective NMDA Receptor Antagonists: Mimicking the U-Shaped Bioactive Conformation of TCN-201 by a [2.2]Paracyclophane System. Steigerwald R; Chou TH; Furukawa H; Wünsch B ChemMedChem; 2022 Nov; 17(21):e202200484. PubMed ID: 36169098 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of GluN2A-selective NMDA receptor antagonists with an electron-rich aromatic B-ring. Rajan R; Schepmann D; Schreiber JA; Seebohm G; Wünsch B Eur J Med Chem; 2021 Jan; 209():112939. PubMed ID: 33162207 [TBL] [Abstract][Full Text] [Related]
4. Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist. McKay S; Griffiths NH; Butters PA; Thubron EB; Hardingham GE; Wyllie DJ Br J Pharmacol; 2012 Jun; 166(3):924-37. PubMed ID: 22022974 [TBL] [Abstract][Full Text] [Related]
5. Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201. Schreiber JA; Müller SL; Westphälinger SE; Schepmann D; Strutz-Seebohm N; Seebohm G; Wünsch B Eur J Med Chem; 2018 Oct; 158():259-269. PubMed ID: 30218911 [TBL] [Abstract][Full Text] [Related]
6. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Edman S; McKay S; Macdonald LJ; Samadi M; Livesey MR; Hardingham GE; Wyllie DJ Neuropharmacology; 2012 Sep; 63(3):441-9. PubMed ID: 22579927 [TBL] [Abstract][Full Text] [Related]
7. Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201. Müller SL; Schreiber JA; Schepmann D; Strutz-Seebohm N; Seebohm G; Wünsch B Eur J Med Chem; 2017 Mar; 129():124-134. PubMed ID: 28222314 [TBL] [Abstract][Full Text] [Related]
8. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313 [TBL] [Abstract][Full Text] [Related]
9. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974 [TBL] [Abstract][Full Text] [Related]
10. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Romero-Hernandez A; Furukawa H Mol Pharmacol; 2017 Jul; 92(1):22-29. PubMed ID: 28468946 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of rat recombinant GluN1/GluN2A and GluN1/GluN2B NMDA receptors by ethanol at concentrations based on the US/UK drink-drive limit. Otton HJ; Janssen A; O'Leary T; Chen PE; Wyllie DJ Eur J Pharmacol; 2009 Jul; 614(1-3):14-21. PubMed ID: 19394328 [TBL] [Abstract][Full Text] [Related]
12. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. Volkmann RA; Fanger CM; Anderson DR; Sirivolu VR; Paschetto K; Gordon E; Virginio C; Gleyzes M; Buisson B; Steidl E; Mierau SB; Fagiolini M; Menniti FS PLoS One; 2016; 11(2):e0148129. PubMed ID: 26829109 [TBL] [Abstract][Full Text] [Related]
13. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Hansen KB; Ogden KK; Yuan H; Traynelis SF Neuron; 2014 Mar; 81(5):1084-1096. PubMed ID: 24607230 [TBL] [Abstract][Full Text] [Related]
14. Deconstruction - Reconstruction: Analysis of the Crucial Structural Elements of GluN2B-Selective, Negative Allosteric NMDA Receptor Modulators with 3-Benzazepine Scaffold. Ritter N; Korff M; Markus A; Schepmann D; Seebohm G; Schreiber JA; Wünsch B Cell Physiol Biochem; 2021 Mar; 55(S3):1-13. PubMed ID: 33656308 [TBL] [Abstract][Full Text] [Related]
15. A novel family of negative and positive allosteric modulators of NMDA receptors. Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Skifter DA; Jane DE; Monaghan DT J Pharmacol Exp Ther; 2010 Dec; 335(3):614-21. PubMed ID: 20858708 [TBL] [Abstract][Full Text] [Related]
16. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Laube B; Jane DE; Monaghan DT Neuropharmacology; 2012 Mar; 62(4):1730-6. PubMed ID: 22155206 [TBL] [Abstract][Full Text] [Related]
17. Structural Basis of the Proton Sensitivity of Human GluN1-GluN2A NMDA Receptors. Zhang JB; Chang S; Xu P; Miao M; Wu H; Zhang Y; Zhang T; Wang H; Zhang J; Xie C; Song N; Luo C; Zhang X; Zhu S Cell Rep; 2018 Dec; 25(13):3582-3590.e4. PubMed ID: 30590034 [TBL] [Abstract][Full Text] [Related]
18. Subunit-selective allosteric inhibition of glycine binding to NMDA receptors. Hansen KB; Ogden KK; Traynelis SF J Neurosci; 2012 May; 32(18):6197-208. PubMed ID: 22553026 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into competitive antagonism in NMDA receptors. Jespersen A; Tajima N; Fernandez-Cuervo G; Garnier-Amblard EC; Furukawa H Neuron; 2014 Jan; 81(2):366-78. PubMed ID: 24462099 [TBL] [Abstract][Full Text] [Related]
20. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Khatri A; Burger PB; Swanger SA; Hansen KB; Zimmerman S; Karakas E; Liotta DC; Furukawa H; Snyder JP; Traynelis SF Mol Pharmacol; 2014 Nov; 86(5):548-60. PubMed ID: 25205677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]