BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34265249)

  • 41. Structural basis of human transcription-DNA repair coupling.
    Kokic G; Wagner FR; Chernev A; Urlaub H; Cramer P
    Nature; 2021 Oct; 598(7880):368-372. PubMed ID: 34526721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase.
    Kim JB; Sharp PA
    J Biol Chem; 2001 Apr; 276(15):12317-23. PubMed ID: 11145967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II.
    Kassube SA; Fang J; Grob P; Yakovchuk P; Goodrich JA; Nogales E
    J Mol Biol; 2013 Oct; 425(19):3639-48. PubMed ID: 22954660
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A cryo-EM structure of KTF1-bound polymerase V transcription elongation complex.
    Zhang HW; Huang K; Gu ZX; Wu XX; Wang JW; Zhang Y
    Nat Commun; 2023 May; 14(1):3118. PubMed ID: 37253723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo.
    Gerber M; Ma J; Dean K; Eissenberg JC; Shilatifard A
    EMBO J; 2001 Nov; 20(21):6104-14. PubMed ID: 11689450
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cryo-EM structure of a mammalian RNA polymerase II elongation complex inhibited by α-amanitin.
    Liu X; Farnung L; Wigge C; Cramer P
    J Biol Chem; 2018 May; 293(19):7189-7194. PubMed ID: 29550768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb.
    C Quaresma AJ; Bugai A; Barboric M
    Nucleic Acids Res; 2016 Sep; 44(16):7527-39. PubMed ID: 27369380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ENL initiates multivalent phase separation of the super elongation complex (SEC) in controlling rapid transcriptional activation.
    Guo C; Che Z; Yue J; Xie P; Hao S; Xie W; Luo Z; Lin C
    Sci Adv; 2020 Apr; 6(14):eaay4858. PubMed ID: 32270036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of the transcribing RNA polymerase II-Elongin complex.
    Chen Y; Kokic G; Dienemann C; Dybkov O; Urlaub H; Cramer P
    Nat Struct Mol Biol; 2023 Dec; 30(12):1925-1935. PubMed ID: 37932450
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Molecular mechanisms of transcription through a nuclesome by RNA polymerase II].
    Kulaeva OI; Maliuchenko NV; Nikitin DV; Demidenko AV; Chertkov OV; Efimova NS; Kirpichnikov MP; Studitskiĭ VM
    Mol Biol (Mosk); 2013; 47(5):754-66. PubMed ID: 25509347
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A complex between DYRK1A and DCAF7 phosphorylates the C-terminal domain of RNA polymerase II to promote myogenesis.
    Yu D; Cattoglio C; Xue Y; Zhou Q
    Nucleic Acids Res; 2019 May; 47(9):4462-4475. PubMed ID: 30864669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient RNA polymerase II pause release requires U2 snRNP function.
    Caizzi L; Monteiro-Martins S; Schwalb B; Lysakovskaia K; Schmitzova J; Sawicka A; Chen Y; Lidschreiber M; Cramer P
    Mol Cell; 2021 May; 81(9):1920-1934.e9. PubMed ID: 33689748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The RNA polymerase II general elongation factors.
    Reines D; Conaway JW; Conaway RC
    Trends Biochem Sci; 1996 Sep; 21(9):351-5. PubMed ID: 8870500
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of a backtracked hexasomal intermediate of nucleosome transcription.
    Farnung L; Ochmann M; Garg G; Vos SM; Cramer P
    Mol Cell; 2022 Sep; 82(17):3126-3134.e7. PubMed ID: 35858621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes.
    Ping YH; Rana TM
    J Biol Chem; 1999 Mar; 274(11):7399-404. PubMed ID: 10066804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural Basis of RNA Polymerase I Transcription Initiation.
    Engel C; Gubbey T; Neyer S; Sainsbury S; Oberthuer C; Baejen C; Bernecky C; Cramer P
    Cell; 2017 Mar; 169(1):120-131.e22. PubMed ID: 28340337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcription initiation complex structures elucidate DNA opening.
    Plaschka C; Hantsche M; Dienemann C; Burzinski C; Plitzko J; Cramer P
    Nature; 2016 May; 533(7603):353-8. PubMed ID: 27193681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activator-mediator binding stabilizes RNA polymerase II orientation within the human mediator-RNA polymerase II-TFIIF assembly.
    Bernecky C; Taatjes DJ
    J Mol Biol; 2012 Apr; 417(5):387-94. PubMed ID: 22343046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA polymerase II elongation factors use conserved regulatory mechanisms.
    Chen Y; Cramer P
    Curr Opin Struct Biol; 2024 Feb; 84():102766. PubMed ID: 38181687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.