These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34265377)

  • 1. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors.
    Omidvar M; Zdarta J; Sigurdardóttir SB; Pinelo M
    Biotechnol Adv; 2022; 54():107798. PubMed ID: 34265377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Compartmentalization Strategies for Metabolic Microcompartments.
    Hinzpeter F; Gerland U; Tostevin F
    Biophys J; 2017 Feb; 112(4):767-779. PubMed ID: 28256236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic cells and organelles: compartmentalization strategies.
    Roodbeen R; van Hest JC
    Bioessays; 2009 Dec; 31(12):1299-308. PubMed ID: 19877005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired enzymatic compartments constructed by spatiotemporally confined in situ self-assembly of catalytic peptide.
    Wang Y; Pan T; Wei X; Su F; Li A; Tai Y; Wei T; Zhang Q; Kong D; Zhang C
    Commun Chem; 2022 Jul; 5(1):81. PubMed ID: 36697908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Microreactors as Artificial Organelles to Conduct Multiple Enzymatic Reactions Simultaneously.
    Godoy-Gallardo M; Labay C; Jansman MM; Ek PK; Hosta-Rigau L
    Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28004530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalized metabolic engineering for biochemical and biofuel production.
    Huttanus HM; Feng X
    Biotechnol J; 2017 Jun; 12(6):. PubMed ID: 28464535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic processing in microfluidic reactors.
    Miyazaki M; Honda T; Yamaguchi H; Briones MP; Maeda H
    Biotechnol Genet Eng Rev; 2008; 25():405-28. PubMed ID: 21412364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria-Inspired Aqueous-in-Aqueous Compartmentalization by In Situ Interfacial Biomineralization.
    Yuan H; Li F; Jia L; Guo T; Kong T; Meng T
    Small Methods; 2023 Feb; 7(2):e2201309. PubMed ID: 36549693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles.
    York-Duran MJ; Godoy-Gallardo M; Labay C; Urquhart AJ; Andresen TL; Hosta-Rigau L
    Colloids Surf B Biointerfaces; 2017 Apr; 152():199-213. PubMed ID: 28110042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Organelles: Towards Adding or Restoring Intracellular Activity.
    Oerlemans RAJF; Timmermans SBPE; van Hest JCM
    Chembiochem; 2021 Jun; 22(12):2051-2078. PubMed ID: 33450141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prokaryotic nanocompartments form synthetic organelles in a eukaryote.
    Lau YH; Giessen TW; Altenburg WJ; Silver PA
    Nat Commun; 2018 Apr; 9(1):1311. PubMed ID: 29615617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials-based strategies for multi-enzyme immobilization and co-localization: A review.
    Jia F; Narasimhan B; Mallapragada S
    Biotechnol Bioeng; 2014 Feb; 111(2):209-22. PubMed ID: 24142707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing yeast organelles for metabolic engineering.
    Hammer SK; Avalos JL
    Nat Chem Biol; 2017 Aug; 13(8):823-832. PubMed ID: 28853733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity.
    Buddingh' BC; van Hest JCM
    Acc Chem Res; 2017 Apr; 50(4):769-777. PubMed ID: 28094501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial ER-Derived Vesicles as Synthetic Organelles for
    Reifenrath M; Oreb M; Boles E; Tripp J
    ACS Synth Biol; 2020 Nov; 9(11):2909-2916. PubMed ID: 33074655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of coacervate-in-coacervate multi-compartment protocells for spatial organization of enzymatic reactions.
    Chen Y; Yuan M; Zhang Y; Liu S; Yang X; Wang K; Liu J
    Chem Sci; 2020 Aug; 11(32):8617-8625. PubMed ID: 34123122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications.
    Liu Z; Zhou W; Qi C; Kong T
    Adv Mater; 2020 Oct; 32(43):e2002932. PubMed ID: 32954548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The challenges of cellular compartmentalization in plant metabolic engineering.
    Heinig U; Gutensohn M; Dudareva N; Aharoni A
    Curr Opin Biotechnol; 2013 Apr; 24(2):239-46. PubMed ID: 23246154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoreactors for pH controlled sequential activity switching in multistep enzymatic processes.
    Minhaz Ud-Dean SM
    IET Nanobiotechnol; 2009 Sep; 3(3):65-70. PubMed ID: 19640159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Framework Derived Nanozymes in Biomedicine.
    Wang D; Jana D; Zhao Y
    Acc Chem Res; 2020 Jul; 53(7):1389-1400. PubMed ID: 32597637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.