BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34265443)

  • 1. High-efficiency plastome base editing in rice with TAL cytosine deaminase.
    Li R; Char SN; Liu B; Liu H; Li X; Yang B
    Mol Plant; 2021 Sep; 14(9):1412-1414. PubMed ID: 34265443
    [No Abstract]   [Full Text] [Related]  

  • 2. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing.
    Grünewald J; Zhou R; Lareau CA; Garcia SP; Iyer S; Miller BR; Langner LM; Hsu JY; Aryee MJ; Joung JK
    Nat Biotechnol; 2020 Jul; 38(7):861-864. PubMed ID: 32483364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the base editing scope in rice by using Cas9 variants.
    Hua K; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ScCas9
    Liu T; Zeng D; Zheng Z; Lin Z; Xue Y; Li T; Xie X; Ma G; Liu YG; Zhu Q
    J Integr Plant Biol; 2021 Sep; 63(9):1611-1619. PubMed ID: 34411422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice.
    Tra MVT; Yin X; Bajal I; Balahadia CP; Quick WP; Bandyopadhyay A
    Methods Mol Biol; 2021; 2238():135-143. PubMed ID: 33471329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress on base editing systems].
    Zong Y; Gao CX
    Yi Chuan; 2019 Sep; 41(9):777-800. PubMed ID: 31549678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular cytosine base editing promotes epigenomic and genomic modifications.
    Weischedel J; Higgins L; Rogers S; Gramalla-Schmitz A; Wyrzykowska P; Borgoni S; MacCarthy T; Chahwan R
    Nucleic Acids Res; 2024 Jan; 52(2):e8. PubMed ID: 37994786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-nucleotide editing: From principle, optimization to application.
    Tang J; Lee T; Sun T
    Hum Mutat; 2019 Dec; 40(12):2171-2183. PubMed ID: 31131955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Sc
    Ma G; Kuang Y; Lu Z; Li X; Xu Z; Ren B; Zhou X; Zhou H
    J Integr Plant Biol; 2021 Sep; 63(9):1606-1610. PubMed ID: 34427973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts.
    Sretenovic S; Pan C; Tang X; Zhang Y; Qi Y
    Methods Mol Biol; 2021; 2238():95-113. PubMed ID: 33471327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. xCas9 expands the scope of genome editing with reduced efficiency in rice.
    Wang J; Meng X; Hu X; Sun T; Li J; Wang K; Yu H
    Plant Biotechnol J; 2019 Apr; 17(4):709-711. PubMed ID: 30549238
    [No Abstract]   [Full Text] [Related]  

  • 13. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.).
    Khan I; Khan S; Zhang Y; Zhou J; Akhoundian M; Jan SA
    Mol Biol Rep; 2021 Apr; 48(4):3605-3615. PubMed ID: 33950408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision genome engineering through adenine and cytosine base editing.
    Kim JS
    Nat Plants; 2018 Mar; 4(3):148-151. PubMed ID: 29483683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Base Editing-Mediated Artificial Evolution Streamlines Trait Gene Identification in Rice.
    Yan F; Yu M; Wang M; Zhou H
    Methods Mol Biol; 2023; 2606():191-202. PubMed ID: 36592317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System.
    Lu Y; Zhu JK
    Mol Plant; 2017 Mar; 10(3):523-525. PubMed ID: 27932049
    [No Abstract]   [Full Text] [Related]  

  • 17. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adenine base editor with expanded targeting scope using SpCas9-NGv1 in rice.
    Negishi K; Kaya H; Abe K; Hara N; Saika H; Toki S
    Plant Biotechnol J; 2019 Aug; 17(8):1476-1478. PubMed ID: 30959555
    [No Abstract]   [Full Text] [Related]  

  • 19. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing.
    Li X; Zhou W; Ren Y; Tian X; Lv T; Wang Z; Fang J; Chu C; Yang J; Bu Q
    J Genet Genomics; 2017 Mar; 44(3):175-178. PubMed ID: 28291639
    [No Abstract]   [Full Text] [Related]  

  • 20. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.