BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34265443)

  • 21. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted base editing in rice with CRISPR/ScCas9 system.
    Wang M; Xu Z; Gosavi G; Ren B; Cao Y; Kuang Y; Zhou C; Spetz C; Yan F; Zhou X; Zhou H
    Plant Biotechnol J; 2020 Aug; 18(8):1645-1647. PubMed ID: 31916673
    [No Abstract]   [Full Text] [Related]  

  • 23. Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms.
    Kuang Y; Li S; Ren B; Yan F; Spetz C; Li X; Zhou X; Zhou H
    Mol Plant; 2020 Apr; 13(4):565-572. PubMed ID: 32001363
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced genome editing in rice using single transcript unit CRISPR-LbCpf1 systems.
    Xu R; Qin R; Li H; Li J; Yang J; Wei P
    Plant Biotechnol J; 2019 Mar; 17(3):553-555. PubMed ID: 30367555
    [No Abstract]   [Full Text] [Related]  

  • 25. Precise A·T to G·C Base Editing in the Rice Genome.
    Hua K; Tao X; Yuan F; Wang D; Zhu JK
    Mol Plant; 2018 Apr; 11(4):627-630. PubMed ID: 29476916
    [No Abstract]   [Full Text] [Related]  

  • 26. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered Cas9 variant tools expand targeting scope of genome and base editing in rice.
    Zeng D; Li X; Huang J; Li Y; Cai S; Yu W; Li Y; Huang Y; Xie X; Gong Q; Tan J; Zheng Z; Guo M; Liu YG; Zhu Q
    Plant Biotechnol J; 2020 Jun; 18(6):1348-1350. PubMed ID: 31696609
    [No Abstract]   [Full Text] [Related]  

  • 28. Genome editing of a dominant resistance gene for broad-spectrum resistance to bacterial diseases in rice without growth penalty.
    Wang M; Li S; Li H; Song C; Xie W; Zuo S; Zhou X; Zhou C; Ji Z; Zhou H
    Plant Biotechnol J; 2024 Mar; 22(3):529-531. PubMed ID: 37997505
    [No Abstract]   [Full Text] [Related]  

  • 29. Expanding the Range of CRISPR/Cas9 Genome Editing in Rice.
    Hu X; Wang C; Fu Y; Liu Q; Jiao X; Wang K
    Mol Plant; 2016 Jun; 9(6):943-5. PubMed ID: 26995294
    [No Abstract]   [Full Text] [Related]  

  • 30. Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice.
    Li S; Zhang X; Wang W; Guo X; Wu Z; Du W; Zhao Y; Xia L
    Mol Plant; 2018 Jul; 11(7):995-998. PubMed ID: 29567453
    [No Abstract]   [Full Text] [Related]  

  • 31. Optimizing base editors for improved efficiency and expanded editing scope in rice.
    Wang M; Wang Z; Mao Y; Lu Y; Yang R; Tao X; Zhu JK
    Plant Biotechnol J; 2019 Sep; 17(9):1697-1699. PubMed ID: 30963683
    [No Abstract]   [Full Text] [Related]  

  • 32. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice.
    Liu X; Qin R; Li J; Liao S; Shan T; Xu R; Wu D; Wei P
    Plant Biotechnol J; 2020 Sep; 18(9):1845-1847. PubMed ID: 31985873
    [No Abstract]   [Full Text] [Related]  

  • 33. Efficient C-to-G editing in rice using an optimized base editor.
    Tian Y; Shen R; Li Z; Yao Q; Zhang X; Zhong D; Tan X; Song M; Han H; Zhu JK; Lu Y
    Plant Biotechnol J; 2022 Jul; 20(7):1238-1240. PubMed ID: 35534986
    [No Abstract]   [Full Text] [Related]  

  • 34. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice.
    Xu R; Yang Y; Qin R; Li H; Qiu C; Li L; Wei P; Yang J
    J Genet Genomics; 2016 Aug; 43(8):529-32. PubMed ID: 27543262
    [No Abstract]   [Full Text] [Related]  

  • 35. Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice.
    Meng X; Hu X; Liu Q; Song X; Gao C; Li J; Wang K
    Sci China Life Sci; 2018 Jan; 61(1):122-125. PubMed ID: 29285711
    [No Abstract]   [Full Text] [Related]  

  • 36. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition.
    Xu Z; Kuang Y; Ren B; Yan D; Yan F; Spetz C; Sun W; Wang G; Zhou X; Zhou H
    Genome Biol; 2021 Jan; 22(1):6. PubMed ID: 33397431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice.
    Xu Y; Meng X; Wang J; Qin B; Wang K; Li J; Wang C; Yu H
    Sci China Life Sci; 2020 Mar; 63(3):450-452. PubMed ID: 31953707
    [No Abstract]   [Full Text] [Related]  

  • 40. A split cytosine deaminase architecture enables robust inducible base editing.
    Long J; Liu N; Tang W; Xie L; Qin F; Zhou L; Tao R; Wang Y; Hu Y; Jiao Y; Li L; Jiang L; Qu J; Chen Q; Yao S
    FASEB J; 2021 Dec; 35(12):e22045. PubMed ID: 34797942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.