These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34265495)
1. The role of MHC I protein dynamics in tapasin and TAPBPR-assisted immunopeptidome editing. van Hateren A; Elliott T Curr Opin Immunol; 2021 Jun; 70():138-143. PubMed ID: 34265495 [TBL] [Abstract][Full Text] [Related]
2. TAPBPR: a new player in the MHC class I presentation pathway. Hermann C; Trowsdale J; Boyle LH Tissue Antigens; 2015 Mar; 85(3):155-66. PubMed ID: 25720504 [TBL] [Abstract][Full Text] [Related]
3. Why TAPBPR? Implications of an additional player in MHC class I peptide presentation. Hafstrand I; Aflalo A; Boyle LH Curr Opin Immunol; 2021 Jun; 70():90-94. PubMed ID: 34052734 [TBL] [Abstract][Full Text] [Related]
4. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Morozov GI; Zhao H; Mage MG; Boyd LF; Jiang J; Dolan MA; Venna R; Norcross MA; McMurtrey CP; Hildebrand W; Schuck P; Natarajan K; Margulies DH Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E1006-15. PubMed ID: 26869717 [TBL] [Abstract][Full Text] [Related]
5. TAPBPR mediates peptide dissociation from MHC class I using a leucine lever. Ilca FT; Neerincx A; Hermann C; Marcu A; Stevanović S; Deane JE; Boyle LH Elife; 2018 Nov; 7():. PubMed ID: 30484775 [TBL] [Abstract][Full Text] [Related]
6. Utilizing TAPBPR to promote exogenous peptide loading onto cell surface MHC I molecules. Ilca FT; Neerincx A; Wills MR; de la Roche M; Boyle LH Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9353-E9361. PubMed ID: 30213851 [TBL] [Abstract][Full Text] [Related]
7. A loop structure allows TAPBPR to exert its dual function as MHC I chaperone and peptide editor. Sagert L; Hennig F; Thomas C; Tampé R Elife; 2020 Mar; 9():. PubMed ID: 32167472 [TBL] [Abstract][Full Text] [Related]
8. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. Hermann C; van Hateren A; Trautwein N; Neerincx A; Duriez PJ; Stevanović S; Trowsdale J; Deane JE; Elliott T; Boyle LH Elife; 2015 Oct; 4():. PubMed ID: 26439010 [TBL] [Abstract][Full Text] [Related]
9. Reanalysis of Immunopeptidomics Datasets Provides Mechanistic Insight into TAPBPR-Mediated Peptide Editing on HLA-A, -B and -C Molecules. Altenburg AF; Morley JL; Bauer J; Walz JS; Boyle LH Wellcome Open Res; 2024; 9():113. PubMed ID: 38800518 [TBL] [Abstract][Full Text] [Related]
10. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Boyle LH; Hermann C; Boname JM; Porter KM; Patel PA; Burr ML; Duncan LM; Harbour ME; Rhodes DA; Skjødt K; Lehner PJ; Trowsdale J Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3465-70. PubMed ID: 23401559 [TBL] [Abstract][Full Text] [Related]
11. Visualising tapasin- and TAPBPR-assisted editing of major histocompatibility complex class-I immunopeptidomes. van Hateren A; Elliott T Curr Opin Immunol; 2023 Aug; 83():102340. PubMed ID: 37245412 [TBL] [Abstract][Full Text] [Related]
13. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. McShan AC; Natarajan K; Kumirov VK; Flores-Solis D; Jiang J; Badstübner M; Toor JS; Bagshaw CR; Kovrigin EL; Margulies DH; Sgourakis NG Nat Chem Biol; 2018 Aug; 14(8):811-820. PubMed ID: 29988068 [TBL] [Abstract][Full Text] [Related]
14. TAPBPR promotes antigen loading on MHC-I molecules using a peptide trap. McShan AC; Devlin CA; Morozov GI; Overall SA; Moschidi D; Akella N; Procko E; Sgourakis NG Nat Commun; 2021 May; 12(1):3174. PubMed ID: 34039964 [TBL] [Abstract][Full Text] [Related]
15. Structural and dynamic studies of TAPBPR and Tapasin reveal the mechanism of peptide loading of MHC-I molecules. Margulies DH; Jiang J; Natarajan K Curr Opin Immunol; 2020 Jun; 64():71-79. PubMed ID: 32402827 [TBL] [Abstract][Full Text] [Related]
16. Molecular determinants of chaperone interactions on MHC-I for folding and antigen repertoire selection. McShan AC; Devlin CA; Overall SA; Park J; Toor JS; Moschidi D; Flores-Solis D; Choi H; Tripathi S; Procko E; Sgourakis NG Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25602-25613. PubMed ID: 31796585 [TBL] [Abstract][Full Text] [Related]
17. Xeno interactions between MHC-I proteins and molecular chaperones enable ligand exchange on a broad repertoire of HLA allotypes. Sun Y; Papadaki GF; Devlin CA; Danon JN; Young MC; Winters TJ; Burslem GM; Procko E; Sgourakis NG Sci Adv; 2023 Feb; 9(8):eade7151. PubMed ID: 36827371 [TBL] [Abstract][Full Text] [Related]
18. Preferential interaction of MHC class I with TAPBPR in the absence of glycosylation. Neerincx A; Boyle LH Mol Immunol; 2019 Sep; 113():58-66. PubMed ID: 30077416 [TBL] [Abstract][Full Text] [Related]
19. Distinct Polymorphisms in HLA Class I Molecules Govern Their Susceptibility to Peptide Editing by TAPBPR. Ilca FT; Drexhage LZ; Brewin G; Peacock S; Boyle LH Cell Rep; 2019 Nov; 29(6):1621-1632.e3. PubMed ID: 31693900 [TBL] [Abstract][Full Text] [Related]
20. The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. Hermann C; Strittmatter LM; Deane JE; Boyle LH J Immunol; 2013 Dec; 191(11):5743-50. PubMed ID: 24163410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]