These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34265529)
41. Advances in the Role of Dark Septate Endophytes in the Plant Resistance to Abiotic and Biotic Stresses. Santos M; Cesanelli I; Diánez F; Sánchez-Montesinos B; Moreno-Gavíra A J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829226 [TBL] [Abstract][Full Text] [Related]
42. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Suryanarayanan TS; Ravishankar JP; Venkatesan G; Murali TS Mycol Res; 2004 Aug; 108(Pt 8):974-8. PubMed ID: 15449603 [TBL] [Abstract][Full Text] [Related]
43. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Pal AK; Gajjar DU; Vasavada AR Med Mycol; 2014 Jan; 52(1):10-8. PubMed ID: 23998343 [TBL] [Abstract][Full Text] [Related]
44. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Guo B; Liang Y; Zhu Y J Plant Physiol; 2009 Jan; 166(1):20-31. PubMed ID: 18313167 [TBL] [Abstract][Full Text] [Related]
45. Melanin synthesis by Sclerotinia sclerotiorum. Butler MJ; Gardiner RB; Day AW Mycologia; 2009; 101(3):296-304. PubMed ID: 19537203 [TBL] [Abstract][Full Text] [Related]
46. Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. Liu PH; Huang ZX; Luo XH; Chen H; Weng BQ; Wang YX; Chen LS PLoS One; 2020; 15(9):e0239617. PubMed ID: 32991614 [TBL] [Abstract][Full Text] [Related]
47. Characterization and biological activities of melanin pigment from root endophytic fungus, Phoma sp. RDSE17. Surendirakumar K; Pandey RR; Muthukumar T; Sathiyaseelan A; Loushambam S; Seth A Arch Microbiol; 2022 Feb; 204(3):171. PubMed ID: 35157131 [TBL] [Abstract][Full Text] [Related]
48. Rapid temporal changes in root colonization by arbuscular mycorrhizal fungi and fine root endophytes, not dark septate endophytes, track plant activity and environment in an alpine ecosystem. Bueno de Mesquita CP; Martinez Del Río CM; Suding KN; Schmidt SK Mycorrhiza; 2018 Nov; 28(8):717-726. PubMed ID: 30141076 [TBL] [Abstract][Full Text] [Related]
49. Functional and transcript analysis of a novel metal transporter gene EpNramp from a dark septate endophyte (Exophiala pisciphila). Wei YF; Li T; Li LF; Wang JL; Cao GH; Zhao ZW Ecotoxicol Environ Saf; 2016 Feb; 124():363-368. PubMed ID: 26595509 [TBL] [Abstract][Full Text] [Related]
50. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Amin S; Thywissen A; Heinekamp T; Saluz HP; Brakhage AA Int J Med Microbiol; 2014 Jul; 304(5-6):626-36. PubMed ID: 24836942 [TBL] [Abstract][Full Text] [Related]
51. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. Hui F; Liu J; Gao Q; Lou B J Environ Sci (China); 2015 Nov; 37():184-91. PubMed ID: 26574103 [TBL] [Abstract][Full Text] [Related]
52. Effects of tricyclazole (5-methyl-1,2,4-triazol[3,4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells. Franzen AJ; Cunha MM; Batista EJ; Seabra SH; De Souza W; Rozental S Microsc Res Tech; 2006 Sep; 69(9):729-37. PubMed ID: 16850396 [TBL] [Abstract][Full Text] [Related]
53. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Chen F; Wang F; Wu F; Mao W; Zhang G; Zhou M Plant Physiol Biochem; 2010 Aug; 48(8):663-72. PubMed ID: 20605723 [TBL] [Abstract][Full Text] [Related]
54. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Qu C; Chen Z; Hu C Chemosphere; 2015 Nov; 138():526-36. PubMed ID: 26207887 [TBL] [Abstract][Full Text] [Related]
55. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Khan MN; Siddiqui MH; AlSolami MA; Alamri S; Hu Y; Ali HM; Al-Amri AA; Alsubaie QD; Al-Munqedhi BMA; Al-Ghamdi A Plant Physiol Biochem; 2020 Nov; 156():278-290. PubMed ID: 32987258 [TBL] [Abstract][Full Text] [Related]
56. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Rizvi A; Ahmed B; Zaidi A; Khan MS Ecotoxicology; 2019 Apr; 28(3):302-322. PubMed ID: 30758729 [TBL] [Abstract][Full Text] [Related]
57. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
58. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes. Wang Q; Ge C; Xu S; Wu Y; Sahito ZA; Ma L; Pan F; Zhou Q; Huang L; Feng Y; Yang X BMC Plant Biol; 2020 Feb; 20(1):63. PubMed ID: 32028891 [TBL] [Abstract][Full Text] [Related]
59. The growth and medicinal quality of Epimedium wushanense are improved by an isolate of dark septate fungus. Zhu ZB; Fan JY; Guo QS; Liu ZY; Zhu GS Pharm Biol; 2015; 53(9):1344-51. PubMed ID: 25858327 [TBL] [Abstract][Full Text] [Related]
60. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L. Deng X; Xia Y; Hu W; Zhang H; Shen Z J Hazard Mater; 2010 Aug; 180(1-3):722-9. PubMed ID: 20488618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]