BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 34265549)

  • 1. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits.
    Hervé M; Sauzet N; Santos D
    Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the optimal energy of epithermal neutron beams for BNCT.
    Biscegliet E; Colangelo P; Colonna N; Santorelli P; Variale V
    Phys Med Biol; 2000 Jan; 45(1):49-58. PubMed ID: 10661582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours.
    Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K
    Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an irradiation method for superficial tumours using a hydrogel bolus in an accelerator-based BNCT.
    Sasaki A; Tanaka H; Takata T; Tamari Y; Watanabe T; Hu N; Kawabata S; Kudo Y; Mitsumoto T; Sakurai Y; Suzuki M
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34823226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bi-tapered and air-gapped beam shaping assembly used for AB-BNCT.
    Lee PY; Tang X; Geng C; Liu YH
    Appl Radiat Isot; 2021 Jan; 167():109392. PubMed ID: 33065400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell survival measurements in an argon, aluminium and sulphur filtered neutron beam: a comparison with 24 keV neutrons and relevance to boron neutron capture therapy.
    Mill AJ; Morgan GR; Newman SM
    Br J Radiol; 1994 Oct; 67(802):1008-16. PubMed ID: 8000825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and performance of an epithermal neutron flux detector using
    Guan X; Gong Y; Murata I; Wang T
    Appl Radiat Isot; 2021 Oct; 176():109880. PubMed ID: 34365204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals.
    Li G; Jiang W; Zhang L; Chen W; Li Q
    Front Public Health; 2021; 9():642561. PubMed ID: 33777888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.