These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 34265612)

  • 1. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century.
    Lin S; Liu Y; Huang X
    Sci Total Environ; 2021 Nov; 796():148924. PubMed ID: 34265612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review.
    Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K
    Environ Res; 2020 May; 184():109328. PubMed ID: 32163772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands.
    Nelson K; Thompson D; Hopkinson C; Petrone R; Chasmer L
    Sci Total Environ; 2021 May; 769():145212. PubMed ID: 33486170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat.
    Martinsson J; Pédehontaa-Hiaa G; Madsen D; Rääf C
    Sci Total Environ; 2022 Apr; 815():152725. PubMed ID: 34974011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world.
    Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR
    Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing wildfires threaten historic carbon sink of boreal forest soils.
    Walker XJ; Baltzer JL; Cumming SG; Day NJ; Ebert C; Goetz S; Johnstone JF; Potter S; Rogers BM; Schuur EAG; Turetsky MR; Mack MC
    Nature; 2019 Aug; 572(7770):520-523. PubMed ID: 31435055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management.
    Kelly J; Ibáñez TS; Santín C; Doerr SH; Nilsson MC; Holst T; Lindroth A; Kljun N
    Glob Chang Biol; 2021 Sep; 27(17):4181-4195. PubMed ID: 34028945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental drying intensifies burning and carbon losses in a northern peatland.
    Turetsky MR; Donahue WF; Benscoter BW
    Nat Commun; 2011 Nov; 2():514. PubMed ID: 22044993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying.
    Kettridge N; Lukenbach MC; Hokanson KJ; Devito KJ; Petrone RM; Mendoza CA; Waddington JM
    Sci Rep; 2019 Mar; 9(1):3727. PubMed ID: 30842569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations.
    Sun T; Guzman JJL; Seward JD; Enders A; Yavitt JB; Lehmann J; Angenent LT
    Nat Commun; 2021 Jul; 12(1):4119. PubMed ID: 34226558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon emissions from the peat fire problem-a review.
    Che Azmi NA; Mohd Apandi N; A Rashid AS
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):16948-16961. PubMed ID: 33641100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In the line of fire: the peatlands of Southeast Asia.
    Page SE; Hooijer A
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon emissions from a temperate coastal peatland wildfire: contributions from natural plant communities and organic soils.
    Mickler RA
    Carbon Balance Manag; 2021 Sep; 16(1):26. PubMed ID: 34468897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variable carbon losses from recurrent fires in drained tropical peatlands.
    Konecny K; Ballhorn U; Navratil P; Jubanski J; Page SE; Tansey K; Hooijer A; Vernimmen R; Siegert F
    Glob Chang Biol; 2016 Apr; 22(4):1469-80. PubMed ID: 26661597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection.
    Wu Y; Xu X; McCarter CPR; Zhang N; Ganzoury MA; Waddington JM; de Lannoy CF
    Sci Total Environ; 2022 May; 822():153579. PubMed ID: 35114220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Record-high CO
    Zheng B; Ciais P; Chevallier F; Yang H; Canadell JG; Chen Y; van der Velde IR; Aben I; Chuvieco E; Davis SJ; Deeter M; Hong C; Kong Y; Li H; Li H; Lin X; He K; Zhang Q
    Science; 2023 Mar; 379(6635):912-917. PubMed ID: 36862792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal expansion of global wildland fire activity in response to climate change.
    Senande-Rivera M; Insua-Costa D; Miguez-Macho G
    Nat Commun; 2022 Mar; 13(1):1208. PubMed ID: 35260561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.