These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 34265612)
1. Climate-induced Arctic-boreal peatland fire and carbon loss in the 21st century. Lin S; Liu Y; Huang X Sci Total Environ; 2021 Nov; 796():148924. PubMed ID: 34265612 [TBL] [Abstract][Full Text] [Related]
2. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Ribeiro-Kumara C; Köster E; Aaltonen H; Köster K Environ Res; 2020 May; 184():109328. PubMed ID: 32163772 [TBL] [Abstract][Full Text] [Related]
3. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Flanagan NE; Wang H; Winton S; Richardson CJ Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914 [TBL] [Abstract][Full Text] [Related]
4. Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands. Nelson K; Thompson D; Hopkinson C; Petrone R; Chasmer L Sci Total Environ; 2021 May; 769():145212. PubMed ID: 33486170 [TBL] [Abstract][Full Text] [Related]
5. Influence of variable oxygen concentration on the combustion derived release of radiocesium from boreal soil and peat. Martinsson J; Pédehontaa-Hiaa G; Madsen D; Rääf C Sci Total Environ; 2022 Apr; 815():152725. PubMed ID: 34974011 [TBL] [Abstract][Full Text] [Related]
6. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Dieleman CM; Rogers BM; Potter S; Veraverbeke S; Johnstone JF; Laflamme J; Solvik K; Walker XJ; Mack MC; Turetsky MR Glob Chang Biol; 2020 Nov; 26(11):6062-6079. PubMed ID: 32529727 [TBL] [Abstract][Full Text] [Related]
11. Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations. Sun T; Guzman JJL; Seward JD; Enders A; Yavitt JB; Lehmann J; Angenent LT Nat Commun; 2021 Jul; 12(1):4119. PubMed ID: 34226558 [TBL] [Abstract][Full Text] [Related]
12. Carbon emissions from the peat fire problem-a review. Che Azmi NA; Mohd Apandi N; A Rashid AS Environ Sci Pollut Res Int; 2021 Apr; 28(14):16948-16961. PubMed ID: 33641100 [TBL] [Abstract][Full Text] [Related]
13. The amount of carbon released from peat and forest fires in Indonesia during 1997. Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213 [TBL] [Abstract][Full Text] [Related]
14. In the line of fire: the peatlands of Southeast Asia. Page SE; Hooijer A Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216508 [TBL] [Abstract][Full Text] [Related]
15. Carbon emissions from a temperate coastal peatland wildfire: contributions from natural plant communities and organic soils. Mickler RA Carbon Balance Manag; 2021 Sep; 16(1):26. PubMed ID: 34468897 [TBL] [Abstract][Full Text] [Related]
17. Assessing leached TOC, nutrients and phenols from peatland soils after lab-simulated wildfires: Implications to source water protection. Wu Y; Xu X; McCarter CPR; Zhang N; Ganzoury MA; Waddington JM; de Lannoy CF Sci Total Environ; 2022 May; 822():153579. PubMed ID: 35114220 [TBL] [Abstract][Full Text] [Related]
18. Record-high CO Zheng B; Ciais P; Chevallier F; Yang H; Canadell JG; Chen Y; van der Velde IR; Aben I; Chuvieco E; Davis SJ; Deeter M; Hong C; Kong Y; Li H; Li H; Lin X; He K; Zhang Q Science; 2023 Mar; 379(6635):912-917. PubMed ID: 36862792 [TBL] [Abstract][Full Text] [Related]
20. Spatial and temporal expansion of global wildland fire activity in response to climate change. Senande-Rivera M; Insua-Costa D; Miguez-Macho G Nat Commun; 2022 Mar; 13(1):1208. PubMed ID: 35260561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]