These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34265692)

  • 21. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics.
    Li P; Wang B; Liu YY; Xu YJ; Jiang ZM; Dong CH; Zhang L; Liu Y; Zhu P
    Carbohydr Polym; 2020 Jun; 237():116173. PubMed ID: 32241447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flame Retardant Paraffin-Based Shape-Stabilized Phase Change Material via Expandable Graphite-Based Flame-Retardant Coating.
    Xu L; Liu X; Yang R
    Molecules; 2020 May; 25(10):. PubMed ID: 32455823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques.
    Li FF
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile construction of agar-based fire-resistant aerogels: A synergistic strategy via in situ generations of magnesium hydroxide and cross-linked Ca-alginate.
    Guo X; Zhao H; Qiang X; Ouyang C; Wang Z; Huang D
    Int J Biol Macromol; 2023 Feb; 227():297-306. PubMed ID: 36549030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel application of silicone-based flame-retardant adhesive in plywood.
    Wang W; Zammarano M; Shields JR; Knowlton ED; Kim I; Gales JA; Hoehler MS; Li J
    Mater Des; 2018; 189():. PubMed ID: 30983679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expandable Graphite as a Multifunctional Flame-Retarding Additive for Highly Filled Thermal Conductive Polymer Formulations.
    Tomiak F; Schneider K; Schoeffel A; Rathberger K; Drummer D
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller.
    Yew MC; Ramli Sulong NH; Yew MK; Amalina MA; Johan MR
    ScientificWorldJournal; 2014; 2014():805094. PubMed ID: 25136687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmentally Friendly, High-Performance Fire Retardant Made from Cellulose and Graphite.
    Santos LP; da Silva DS; Morari TH; Galembeck F
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials.
    Jones M; Bhat T; Kandare E; Thomas A; Joseph P; Dekiwadia C; Yuen R; John S; Ma J; Wang CH
    Sci Rep; 2018 Dec; 8(1):17583. PubMed ID: 30514955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eco-friendly flame retardant coating deposited on cotton fabrics from bio-based chitosan, phytic acid and divalent metal ions.
    Zhang Z; Ma Z; Leng Q; Wang Y
    Int J Biol Macromol; 2019 Nov; 140():303-310. PubMed ID: 31415853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of Industrial Grade Thermal Insulation at Elevated Temperatures.
    Gunnarshaug A; Metallinou MM; Log T
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
    Zhang G; Zhu G; Zhao G
    Int J Environ Res Public Health; 2016 Aug; 13(9):. PubMed ID: 27589774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combustion Behavior and Thermal Degradation Properties of Wood Impregnated with Intumescent Biomass Flame Retardants: Phytic Acid, Hydrolyzed Collagen, and Glycerol.
    Li L; Chen Z; Lu J; Wei M; Huang Y; Jiang P
    ACS Omega; 2021 Feb; 6(5):3921-3930. PubMed ID: 33585771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research on Thermal Stability and Flammability of Wood Scob-Based Loose-Fill Thermal Insulation Impregnated with Multicomponent Suspensions.
    Augaitis N; Vaitkus S; Kairytė A; Vėjelis S; Šeputytė-Jucikė J; Balčiūnas G; Kremensas A
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of fire retardants on combustion and pyrolysis of sugar-cane bagasse.
    Griffin GJ
    Bioresour Technol; 2011 Sep; 102(17):8199-204. PubMed ID: 21680181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam.
    Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel and facile strategy for highly flame retardant polymer foam composite materials: Transforming silicone resin coating into silica self-extinguishing layer.
    Wu Q; Zhang Q; Zhao L; Li SN; Wu LB; Jiang JX; Tang LC
    J Hazard Mater; 2017 Aug; 336():222-231. PubMed ID: 28494310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by double network hydrogel coatings.
    Huang Y; Zhou J; Sun P; Zhang L; Qian X; Jiang S; Shi C
    Soft Matter; 2021 Dec; 17(46):10555-10565. PubMed ID: 34761787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.