These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34265706)
1. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. Dietrich CC; Tandy S; Murawska-Wlodarczyk K; Banaś A; Korzeniak U; Seget B; Babst-Kostecka A Chemosphere; 2021 Dec; 285():131437. PubMed ID: 34265706 [TBL] [Abstract][Full Text] [Related]
2. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Kushwaha P; Neilson JW; Maier RM; Babst-Kostecka A Sci Total Environ; 2022 Jan; 803():150006. PubMed ID: 34487902 [TBL] [Abstract][Full Text] [Related]
3. Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? Bert V; Bonnin I; Saumitou-Laprade P; De Laguérie P; Petit D New Phytol; 2002 Jul; 155(1):47-57. PubMed ID: 33873296 [TBL] [Abstract][Full Text] [Related]
4. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions. Tlustoš P; Břendová K; Száková J; Najmanová J; Koubová K Int J Phytoremediation; 2016; 18(2):110-5. PubMed ID: 26280307 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials. Jacobs A; Drouet T; Sterckeman T; Noret N Environ Sci Pollut Res Int; 2017 Mar; 24(9):8176-8188. PubMed ID: 28144868 [TBL] [Abstract][Full Text] [Related]
6. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Li Z; Wu L; Hu P; Luo Y; Zhang H; Christie P Environ Pollut; 2014 Jun; 189():176-83. PubMed ID: 24675367 [TBL] [Abstract][Full Text] [Related]
7. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
8. Urban soil phytomanagement for Zn and Cd in situ removal, greening, and Zn-rich biomass production taking care of snail exposure. Grignet A; de Vaufleury A; Papin A; Bert V Environ Sci Pollut Res Int; 2020 Jan; 27(3):3187-3201. PubMed ID: 31838670 [TBL] [Abstract][Full Text] [Related]
9. Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution. Kashem MA; Singh BR; Kubota H; Sugawara R; Kitajima N; Kondo T; Kawai S Environ Sci Pollut Res Int; 2010 Jun; 17(5):1174-6. PubMed ID: 20300871 [TBL] [Abstract][Full Text] [Related]
10. Diversity and activity of soil biota at a post-mining site highly contaminated with Zn and Cd are enhanced by metallicolous compared to non-metallicolous Klimek B; Stępniewska K; Seget B; Pandey VC; Babst-Kostecka A Land Degrad Dev; 2023 Mar; 34(5):1538-1548. PubMed ID: 37485419 [TBL] [Abstract][Full Text] [Related]
11. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Muhammad I; Puschenreiter M; Wenzel WW Sci Total Environ; 2012 Feb; 416():490-500. PubMed ID: 22177029 [TBL] [Abstract][Full Text] [Related]
12. The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. Claire-Lise M; Nathalie V N Biotechnol; 2012 Nov; 30(1):9-14. PubMed ID: 22850245 [TBL] [Abstract][Full Text] [Related]
13. Quantitative trait loci analysis of mineral element concentrations in an Arabidopsis halleri x Arabidopsis lyrata petraea F2 progeny grown on cadmium-contaminated soil. Willems G; Frérot H; Gennen J; Salis P; Saumitou-Laprade P; Verbruggen N New Phytol; 2010 Jul; 187(2):368-379. PubMed ID: 20487315 [TBL] [Abstract][Full Text] [Related]
14. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Muehe EM; Weigold P; Adaktylou IJ; Planer-Friedrich B; Kraemer U; Kappler A; Behrens S Appl Environ Microbiol; 2015 Mar; 81(6):2173-81. PubMed ID: 25595759 [TBL] [Abstract][Full Text] [Related]
15. Influence of edaphic conditions and nitrogen fertilizers on cadmium and zinc phytoextraction efficiency of Noccaea caerulescens. Jacobs A; Noret N; Van Baekel A; Liénard A; Colinet G; Drouet T Sci Total Environ; 2019 May; 665():649-659. PubMed ID: 30776637 [TBL] [Abstract][Full Text] [Related]
16. Use of a hyperaccumulator and biochar to remediate an acid soil highly contaminated with trace metals and/or oxytetracycline. Li Z; Jia M; Christie P; Ali S; Wu L Chemosphere; 2018 Aug; 204():390-397. PubMed ID: 29674151 [TBL] [Abstract][Full Text] [Related]
17. Effects of Growth Stage and Cd Chemical Form on Cd and Zn Accumulation in Kudo H; Inoue C; Sugawara K Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33923395 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms. Mishra R; Datta SP; Annapurna K; Meena MC; Dwivedi BS; Golui D; Bandyopadhyay K Environ Sci Pollut Res Int; 2019 Jun; 26(17):17224-17235. PubMed ID: 31012068 [TBL] [Abstract][Full Text] [Related]
19. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Li Z; Wu L; Luo Y; Christie P Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]