These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34265725)

  • 1. Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna.
    Varsou DD; Ellis LA; Afantitis A; Melagraki G; Lynch I
    Chemosphere; 2021 Dec; 285():131452. PubMed ID: 34265725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies.
    Nasser F; Constantinou J; Lynch I
    Proteomics; 2020 May; 20(9):e1800412. PubMed ID: 31750982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles.
    Hund-Rinke K; Baun A; Cupi D; Fernandes TF; Handy R; Kinross JH; Navas JM; Peijnenburg W; Schlich K; Shaw BJ; Scott-Fordsmand JJ
    Nanotoxicology; 2016 Dec; 10(10):1442-1447. PubMed ID: 27592624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applicability of nanomaterial-specific guidelines within long-term Daphnia magna toxicity assays: A case study on multigenerational effects of nTiO
    Nederstigt TAP; Peijnenburg WJGM; Bleeker EAJ; Vijver MG
    Regul Toxicol Pharmacol; 2022 Jun; 131():105156. PubMed ID: 35321839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques.
    Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A
    Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eco-corona-mediated transformation of nano-sized Y
    Khort A; Chang T; Hua J; Blomberg E; Cedervall T; Odnevall I
    NanoImpact; 2024 Jan; 33():100490. PubMed ID: 38159885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials?
    Melegari SP; Fuzinatto CF; Gonçalves RA; Oscar BV; Vicentini DS; Matias WG
    Chemosphere; 2019 Jun; 224():237-246. PubMed ID: 30822730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID.
    Bondarenko OM; Heinlaan M; Sihtmäe M; Ivask A; Kurvet I; Joonas E; Jemec A; Mannerström M; Heinonen T; Rekulapelly R; Singh S; Zou J; Pyykkö I; Drobne D; Kahru A
    Nanotoxicology; 2016 Nov; 10(9):1229-42. PubMed ID: 27259032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Surface Coating to Accumulation Dynamics and Acute Toxicity of Copper Nanomaterials and Dissolved Copper in Daphnia magna.
    Gajda-Meissner Z; Matyja K; Brown DM; Hartl MGJ; Fernandes TF
    Environ Toxicol Chem; 2020 Feb; 39(2):287-299. PubMed ID: 31610609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna.
    Cupi D; Hartmann NB; Baun A
    Environ Toxicol Chem; 2015 Mar; 34(3):497-506. PubMed ID: 25546145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for
    Afantitis A; Melagraki G; Isigonis P; Tsoumanis A; Varsou DD; Valsami-Jones E; Papadiamantis A; Ellis LA; Sarimveis H; Doganis P; Karatzas P; Tsiros P; Liampa I; Lobaskin V; Greco D; Serra A; Kinaret PAS; Saarimäki LA; Grafström R; Kohonen P; Nymark P; Willighagen E; Puzyn T; Rybinska-Fryca A; Lyubartsev A; Alstrup Jensen K; Brandenburg JG; Lofts S; Svendsen C; Harrison S; Maier D; Tamm K; Jänes J; Sikk L; Dusinska M; Longhin E; Rundén-Pran E; Mariussen E; El Yamani N; Unger W; Radnik J; Tropsha A; Cohen Y; Leszczynski J; Ogilvie Hendren C; Wiesner M; Winkler D; Suzuki N; Yoon TH; Choi JS; Sanabria N; Gulumian M; Lynch I
    Comput Struct Biotechnol J; 2020; 18():583-602. PubMed ID: 32226594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna.
    Nasser F; Lynch I
    J Proteomics; 2016 Mar; 137():45-51. PubMed ID: 26376098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.
    Farcal L; Torres Andón F; Di Cristo L; Rotoli BM; Bussolati O; Bergamaschi E; Mech A; Hartmann NB; Rasmussen K; Riego-Sintes J; Ponti J; Kinsner-Ovaskainen A; Rossi F; Oomen A; Bos P; Chen R; Bai R; Chen C; Rocks L; Fulton N; Ross B; Hutchison G; Tran L; Mues S; Ossig R; Schnekenburger J; Campagnolo L; Vecchione L; Pietroiusti A; Fadeel B
    PLoS One; 2015; 10(5):e0127174. PubMed ID: 25996496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment.
    Brunelli A; Cazzagon V; Faraggiana E; Bettiol C; Picone M; Marcomini A; Badetti E
    Sci Total Environ; 2024 Apr; 921():171132. PubMed ID: 38395161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of uptake and elimination kinetics of metallic oxide nanomaterials on the freshwater microcrustacean
    Rivero Arze A; Mouneyrac C; Chatel A; Manier N
    Nanotoxicology; 2021 Nov; 15(9):1168-1179. PubMed ID: 34674596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of standard media in toxicological assessments with Daphnia magna: chelators and ionic composition versus metal toxicity.
    Loureiro C; Castro BB; Pereira JL; Gonçalves F
    Ecotoxicology; 2011 Jan; 20(1):139-48. PubMed ID: 21080223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish acute toxicity of nine nanomaterials: Need of pre-tests to ensure comparability and reuse of data.
    Pulido-Reyes G; Moreno-Martín G; Gómez-Gómez B; Navas JM; Madrid Y; Fernández-Cruz ML
    Environ Res; 2024 Mar; 245():118072. PubMed ID: 38157971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Daphnia as a model organism to probe biological responses to nanomaterials-from individual to population effects via adverse outcome pathways.
    Reilly K; Ellis LA; Davoudi HH; Supian S; Maia MT; Silva GH; Guo Z; Martinez DST; Lynch I
    Front Toxicol; 2023; 5():1178482. PubMed ID: 37124970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials.
    Baumann J; Sakka Y; Bertrand C; Köser J; Filser J
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):2201-2213. PubMed ID: 24043504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment.
    Molins-Delgado D; Gago-Ferrero P; Díaz-Cruz MS; Barceló D
    Environ Res; 2016 Feb; 145():126-134. PubMed ID: 26674115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.