These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 3426591)

  • 1. Decrease in total and free magnesium concentration following traumatic brain injury in rats.
    Vink R; McIntosh TK; Demediuk P; Faden AI
    Biochem Biophys Res Commun; 1987 Dec; 149(2):594-9. PubMed ID: 3426591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy.
    Vink R; Faden AI; McIntosh TK
    J Neurotrauma; 1988; 5(4):315-30. PubMed ID: 3249310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma.
    Vink R; McIntosh TK; Demediuk P; Weiner MW; Faden AI
    J Biol Chem; 1988 Jan; 263(2):757-61. PubMed ID: 3335524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased mortality in female rats after brain trauma is associated with lower free Mg2+.
    Emerson CS; Vink R
    Neuroreport; 1992 Nov; 3(11):957-60. PubMed ID: 1482764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment with the thyrotropin-releasing hormone analog CG3703 restores magnesium homeostasis following traumatic brain injury in rats.
    Vink R; McIntosh TK; Faden AI
    Brain Res; 1988 Sep; 460(1):184-8. PubMed ID: 3146405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical assessment of noise-induced errors in 31P MRS: application to the measurement of free intracellular magnesium in vivo.
    Golding EM; Dobson GP; Golding RM
    Magn Reson Med; 1996 Feb; 35(2):174-85. PubMed ID: 8622581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traumatic brain injury in the rat: effects on lipid metabolism, tissue magnesium, and water content.
    Demediuk P; Faden AI; Romhanyi R; Vink R; McIntosh TK
    J Neurotrauma; 1988; 5(2):105-19. PubMed ID: 3066912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain free magnesium concentration is predictive of motor outcome following traumatic axonal brain injury in rats.
    Heath DL; Vink R
    Magnes Res; 1999 Dec; 12(4):269-77. PubMed ID: 10612084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of noncompetitive blockade of N-methyl-D-aspartate receptors on the neurochemical sequelae of experimental brain injury.
    McIntosh TK; Vink R; Soares H; Hayes R; Simon R
    J Neurochem; 1990 Oct; 55(4):1170-9. PubMed ID: 2168932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P NMR characterization of graded traumatic brain injury in rats.
    Vink R; McIntosh TK; Yamakami I; Faden AI
    Magn Reson Med; 1988 Jan; 6(1):37-48. PubMed ID: 3352504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decrease in cerebral free magnesium concentration following closed head injury and effects of VA-045 in rats.
    Suzuki M; Nishina M; Endo M; Matsushita K; Tetsuka M; Shima K; Okuyama S
    Gen Pharmacol; 1997 Jan; 28(1):119-21. PubMed ID: 9112087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traumatic spinal cord injury in rabbits decreases intracellular free magnesium concentration as measured by 31P MRS.
    Vink R; Yum SW; Lemke M; Demediuk P; Faden AI
    Brain Res; 1989 Jun; 490(1):144-7. PubMed ID: 2758321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies.
    McIntosh TK; Faden AI; Yamakami I; Vink R
    J Neurotrauma; 1988; 5(1):17-31. PubMed ID: 3193462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opiate antagonist nalmefene improves intracellular free Mg2+, bioenergetic state, and neurologic outcome following traumatic brain injury in rats.
    Vink R; McIntosh TK; Rhomhanyi R; Faden AI
    J Neurosci; 1990 Nov; 10(11):3524-30. PubMed ID: 2230942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and prolonged alterations in brain free magnesium following fluid percussion-induced brain trauma in rats.
    Vink R; Heath DL; McIntosh TK
    J Neurochem; 1996 Jun; 66(6):2477-83. PubMed ID: 8632172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular free magnesium and high energy phosphates in the perfused normotensive and spontaneously hypertensive rat heart. A 31P NMR study.
    Jelicks LA; Gupta RK
    Am J Hypertens; 1991 Feb; 4(2 Pt 1):131-6. PubMed ID: 2021444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of competitive vs noncompetitive blockade of the NMDA channel following traumatic brain injury.
    Golding EM; Vink R
    Mol Chem Neuropathol; 1995; 24(2-3):137-50. PubMed ID: 7632318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acute ethanol intoxication on experimental brain injury in the rat: neurobehavioral and phosphorus-31 nuclear magnetic resonance spectroscopy studies.
    Yamakami I; Vink R; Faden AI; Gennarelli TA; Lenkinski R; McIntosh TK
    J Neurosurg; 1995 May; 82(5):813-21. PubMed ID: 7714607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of prolonged focal cerebral edema and regional cation changes following experimental brain injury in the rat.
    Soares HD; Thomas M; Cloherty K; McIntosh TK
    J Neurochem; 1992 May; 58(5):1845-52. PubMed ID: 1560237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.
    Vink R; McIntosh TK; Weiner MW; Faden AI
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):563-71. PubMed ID: 3654796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.