These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34265947)

  • 1. Numerical Stability of Modified Lorentz FDTD Unified From Various Dispersion Models.
    Park J; Jung KY
    Opt Express; 2021 Jul; 29(14):21639-21654. PubMed ID: 34265947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials.
    Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP
    Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADE-FDTD Scattered-Field Formulation for Dispersive Materials.
    Kong SC; Simpson JJ; Backman V
    IEEE Microw Wirel Compon Lett; 2008 Jan; 18(1):4-6. PubMed ID: 19844602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.
    Wang Z; Zhou X
    J Acoust Soc Am; 2016 Dec; 140(6):4276. PubMed ID: 28039989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective optical response of silicon to sunlight in the finite-difference time-domain method.
    Deinega A; John S
    Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of dispersion models in the split-field-finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence.
    Belkhir A; Arar O; Benabbes SS; Lamrous O; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046705. PubMed ID: 20481858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
    Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM
    Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models of near-field spectroscopic studies: comparison between Finite-Element and Finite-Difference methods.
    Grosges T; Vial A; Barchiesi D
    Opt Express; 2005 Oct; 13(21):8483-97. PubMed ID: 19498878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body-of-revolution finite-difference time-domain modeling of hybrid-plasmonic ring resonators.
    Mirzaei-Ghormish S; Shahabadi M; Smalley DE
    Opt Express; 2022 Sep; 30(20):36332-36342. PubMed ID: 36258563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.
    Zhao Y; Argyropoulos C; Hao Y
    Opt Express; 2008 Apr; 16(9):6717-30. PubMed ID: 18545374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
    Nagaoka T; Watanabe S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():327-30. PubMed ID: 21096967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconditionally stable WLP-FDTD method for the modeling of electromagnetic wave propagation in gyrotropic materials.
    Li ZW; Xi XL; Zhang JS; Liu JF
    Opt Express; 2015 Dec; 23(25):31864-73. PubMed ID: 26698978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audibility of dispersion error in room acoustic finite-difference time-domain simulation as a function of simulation distance.
    Saarelma J; Botts J; Hamilton B; Savioja L
    J Acoust Soc Am; 2016 Apr; 139(4):1822. PubMed ID: 27106330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the FDTD method relevant to the analysis of microwave power problems.
    Celuch M; Gwarek WK
    J Microw Power Electromagn Energy; 2007; 41(4):62-80. PubMed ID: 18557398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A frequency-dependent finite-difference time-domain formulation for induced current calculations in human beings.
    Gandhi OP; Gao BQ; Chen JY
    Bioelectromagnetics; 1992; 13(6):543-55. PubMed ID: 1482417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.