These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34266007)

  • 21. Dual-chirp Fourier domain mode-locked optoelectronic oscillator.
    Hao T; Tang J; Shi N; Li W; Zhu N; Li M
    Opt Lett; 2019 Apr; 44(8):1912-1915. PubMed ID: 30985773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photonics-based MIMO radar with high-resolution and fast detection capability.
    Zhang F; Gao B; Pan S
    Opt Express; 2018 Jun; 26(13):17529-17540. PubMed ID: 30119564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triple band frequency generator based on an optoelectronic oscillator with low phase noise.
    Chen Z; Dai J; Zhou Y; Yin F; Zhang T; Li J; Dai Y; Xu K
    Opt Express; 2017 Aug; 25(17):20749-20756. PubMed ID: 29041753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Demonstration of photonics-based flexible integration of sensing and communication with adaptive waveforms for a W-band fiber-wireless integrated network.
    Dong B; Jia J; Li G; Shi J; Wang H; Zhang J; Chi N
    Opt Express; 2022 Oct; 30(22):40936-40950. PubMed ID: 36299018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold.
    Hao T; Tang J; Shi N; Li W; Zhu N; Li M
    Opt Lett; 2019 Jun; 44(12):3062-3065. PubMed ID: 31199381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonics-assisted joint high-speed communication and high-resolution radar detection system.
    Wang Y; Dong Z; Ding J; Li W; Wang M; Zhao F; Yu J
    Opt Lett; 2021 Dec; 46(24):6103-6106. PubMed ID: 34913927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photonic super-resolution millimeter-wave joint radar-communication system using self-coherent detection.
    Bai W; Li P; Zou X; Zhong N; Pan W; Yan L; Luo B
    Opt Lett; 2023 Feb; 48(3):608-611. PubMed ID: 36723544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-sensitivity optical fiber temperature sensor based on a dual-loop optoelectronic oscillator with the Vernier effect.
    Cheng Y; Wang Y; Song Z; Lei J
    Opt Express; 2020 Nov; 28(23):35264-35271. PubMed ID: 33182976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator.
    Do PT; Alonso-Ramos C; Le Roux X; Ledoux I; Journet B; Cassan E
    Sci Rep; 2020 Apr; 10(1):6982. PubMed ID: 32332766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering.
    Shi M; Yi L; Wei W; Hu W
    Opt Express; 2018 Jun; 26(13):16113-16124. PubMed ID: 30119448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop.
    Xu Z; Shu X; Fu H
    Opt Express; 2019 Aug; 27(16):23274-23281. PubMed ID: 31510608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast automatic frequency calibration assisted phase-locked highly stable optoelectronic oscillator.
    Peng H; Liu N; Xie X; Chen Z
    Opt Express; 2021 Feb; 29(4):6220-6235. PubMed ID: 33726148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spurious level and phase noise improved Fourier domain mode-locked optoelectronic oscillator based on a self-injection-locking technique.
    Wang Y; Li X; Zhang J; Wo J
    Opt Express; 2021 Mar; 29(5):7535-7543. PubMed ID: 33726253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-gain narrowband radio frequency signal amplifier based on a dual-loop optoelectronic oscillator.
    Wang X; Wu R; Li B; Wang Z; Liu Y; Yuan J; Guo J; Liu H
    Opt Express; 2022 Apr; 30(9):13994-14001. PubMed ID: 35473153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint communication and radar sensing functions system based on photonics at the W-band.
    Wang Y; Liu J; Ding J; Wang M; Zhao F; Yu J
    Opt Express; 2022 Apr; 30(8):13404-13415. PubMed ID: 35472953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems.
    Shi C; Salous S; Wang F; Zhou J
    EURASIP J Adv Signal Process; 2016; 2016(1):111. PubMed ID: 27853467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Broadband random optoelectronic oscillator.
    Ge Z; Hao T; Capmany J; Li W; Zhu N; Li M
    Nat Commun; 2020 Nov; 11(1):5724. PubMed ID: 33184294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Resolution and Large-Detection-Range Virtual Antenna Array for Automotive Radar Applications.
    Abdullah H; Mabrouk M; Abd-Elnaby Kabeel A; Hussein A
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser.
    Zhang X; Zheng J; Pu T; Zhang Y; Shi Y; Li J; Li Y; Zhu H; Chen X
    Opt Express; 2019 Mar; 27(5):7036-7046. PubMed ID: 30876276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RF photonic front-end integrating with local oscillator loop.
    Yu H; Chen M; Gao H; Yang S; Chen H; Xie S
    Opt Express; 2014 Feb; 22(4):3918-23. PubMed ID: 24663712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.