These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 34266134)
21. In Heßler A; Wahl S; Leuteritz T; Antonopoulos A; Stergianou C; Schön CF; Naumann L; Eicker N; Lewin M; Maß TWW; Wuttig M; Linden S; Taubner T Nat Commun; 2021 Feb; 12(1):924. PubMed ID: 33568636 [TBL] [Abstract][Full Text] [Related]
22. Switching between topological edge states in plasmonic systems using phase-change materials. Huang Y; Shen Y; Veronis G Opt Express; 2022 Dec; 30(25):44594-44603. PubMed ID: 36522881 [TBL] [Abstract][Full Text] [Related]
24. Roadmap for phase change materials in photonics and beyond. Prabhathan P; Sreekanth KV; Teng J; Ko JH; Yoo YJ; Jeong HH; Lee Y; Zhang S; Cao T; Popescu CC; Mills B; Gu T; Fang Z; Chen R; Tong H; Wang Y; He Q; Lu Y; Liu Z; Yu H; Mandal A; Cui Y; Ansari AS; Bhingardive V; Kang M; Lai CK; Merklein M; Müller MJ; Song YM; Tian Z; Hu J; Losurdo M; Majumdar A; Miao X; Chen X; Gholipour B; Richardson KA; Eggleton BJ; Sharda K; Wuttig M; Singh R iScience; 2023 Oct; 26(10):107946. PubMed ID: 37854690 [TBL] [Abstract][Full Text] [Related]
25. Chalcogenide Phase Change Material for Active Terahertz Photonics. Pitchappa P; Kumar A; Prakash S; Jani H; Venkatesan T; Singh R Adv Mater; 2019 Mar; 31(12):e1808157. PubMed ID: 30687971 [TBL] [Abstract][Full Text] [Related]
26. Recent developments in Chalcogenide phase change material-based nanophotonics. Tripathi D; Vyas HS; Kumar S; Panda SS; Hegde R Nanotechnology; 2023 Sep; 34(50):. PubMed ID: 37595569 [TBL] [Abstract][Full Text] [Related]
27. Enhancing Focusing and Defocusing Capabilities with a Dynamically Reconfigurable Metalens Utilizing Sb Shen C; Ye J; Peserico N; Gui Y; Dong C; Kang H; Movahhed Nouri B; Wang H; Heidari E; Sorger VJ; Dalir H Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513117 [TBL] [Abstract][Full Text] [Related]
28. Tunable absorber embedded with GST mediums and trilayer graphene strip microheaters. Pourmand M; Choudhury PK; Mohamed MA Sci Rep; 2021 Feb; 11(1):3603. PubMed ID: 33574491 [TBL] [Abstract][Full Text] [Related]
29. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Lu Y; Stegmaier M; Nukala P; Giambra MA; Ferrari S; Busacca A; Pernice WH; Agarwal R Nano Lett; 2017 Jan; 17(1):150-155. PubMed ID: 27959556 [TBL] [Abstract][Full Text] [Related]
30. Reconfigurable Micro/Nano-Optical Devices Based on Phase Transitions: From Materials, Mechanisms to Applications. Li C; Pan R; Gu C; Guo H; Li J Adv Sci (Weinh); 2024 May; 11(20):e2306344. PubMed ID: 38489745 [TBL] [Abstract][Full Text] [Related]
31. Electrically Reconfigurable Phase-Change Transmissive Metasurface. Popescu CC; Aryana K; Garud P; Dao KP; Vitale S; Liberman V; Bae HB; Lee TW; Kang M; Richardson KA; Julian M; Ocampo CAR; Zhang Y; Gu T; Hu J; Kim HJ Adv Mater; 2024 Sep; 36(36):e2400627. PubMed ID: 38724020 [TBL] [Abstract][Full Text] [Related]
32. Electrically Tunable All-PCM Visible Plasmonics. Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781 [TBL] [Abstract][Full Text] [Related]
33. Near-IR reconfigurable 1D Ag grating Fabry-Perot absorber hybridized with phase-change material GSST. Zamani N; Hatef A; Nadgaran H Appl Opt; 2021 Sep; 60(25):7596-7602. PubMed ID: 34613226 [TBL] [Abstract][Full Text] [Related]
34. Structural Phase Transitions between Layered Indium Selenide for Integrated Photonic Memory. Li T; Wang Y; Li W; Mao D; Benmore CJ; Evangelista I; Xing H; Li Q; Wang F; Sivaraman G; Janotti A; Law S; Gu T Adv Mater; 2022 Jul; 34(26):e2108261. PubMed ID: 35435286 [TBL] [Abstract][Full Text] [Related]
35. Structural Transitions in Ge Behrens M; Lotnyk A; Bryja H; Gerlach JW; Rauschenbach B Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369916 [TBL] [Abstract][Full Text] [Related]
36. Design of hybrid narrow-band plasmonic absorber based on chalcogenide phase change material in the infrared spectrum. Alves Oliveira I; Gomes de Souza IL; Rodriguez-Esquerre VF Sci Rep; 2021 Nov; 11(1):21919. PubMed ID: 34754022 [TBL] [Abstract][Full Text] [Related]
37. Towards integrated metatronics: a holistic approach on precise optical and electrical properties of Indium Tin Oxide. Gui Y; Miscuglio M; Ma Z; Tahersima MH; Sun S; Amin R; Dalir H; Sorger VJ Sci Rep; 2019 Aug; 9(1):11279. PubMed ID: 31375787 [TBL] [Abstract][Full Text] [Related]
38. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Zhang Y; Fowler C; Liang J; Azhar B; Shalaginov MY; Deckoff-Jones S; An S; Chou JB; Roberts CM; Liberman V; Kang M; Ríos C; Richardson KA; Rivero-Baleine C; Gu T; Zhang H; Hu J Nat Nanotechnol; 2021 Jun; 16(6):661-666. PubMed ID: 33875868 [TBL] [Abstract][Full Text] [Related]
39. All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material. Zhang H; Zhou L; Xu J; Lu L; Chen J; Rahman BMA Opt Lett; 2018 Nov; 43(22):5539-5542. PubMed ID: 30439890 [TBL] [Abstract][Full Text] [Related]