These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34266447)

  • 41. Yield prediction in a peanut breeding program using remote sensing data and machine learning algorithms.
    Pugh NA; Young A; Ojha M; Emendack Y; Sanchez J; Xin Z; Puppala N
    Front Plant Sci; 2024; 15():1339864. PubMed ID: 38444530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery.
    Wu S; Deng L; Guo L; Wu Y
    Plant Methods; 2022 May; 18(1):68. PubMed ID: 35590377
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improve Soybean Variety Selection Accuracy Using UAV-Based High-Throughput Phenotyping Technology.
    Zhou J; Beche E; Vieira CC; Yungbluth D; Zhou J; Scaboo A; Chen P
    Front Plant Sci; 2021; 12():768742. PubMed ID: 35087547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimating potassium in potato plants based on multispectral images acquired from unmanned aerial vehicles.
    Ma Y; Chen Z; Fan Y; Bian M; Yang G; Chen R; Feng H
    Front Plant Sci; 2023; 14():1265132. PubMed ID: 37810376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress.
    Johansen K; Morton MJL; Malbeteau YM; Aragon B; Al-Mashharawi SK; Ziliani MG; Angel Y; Fiene GM; Negrão SSC; Mousa MAA; Tester MA; McCabe MF
    Front Plant Sci; 2019; 10():370. PubMed ID: 30984222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated extraction of
    Ji Y; Yan E; Yin X; Song Y; Wei W; Mo D
    Front Plant Sci; 2022; 13():958940. PubMed ID: 36035664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery.
    Matese A; Di Gennaro SF; Orlandi G; Gatti M; Poni S
    Front Plant Sci; 2022; 13():898722. PubMed ID: 35769294
    [TBL] [Abstract][Full Text] [Related]  

  • 50. UAV-based imaging platform for monitoring maize growth throughout development.
    Tirado SB; Hirsch CN; Springer NM
    Plant Direct; 2020 Jun; 4(6):e00230. PubMed ID: 32524060
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of Buckwheat Maturity in UAV-RGB Images Based on Recursive Feature Elimination Cross-Validation: A Case Study in Jinzhong, Northern China.
    Wu J; Zheng D; Wu Z; Song H; Zhang X
    Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501299
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The potential of UAV-borne spectral and textural information for predicting aboveground biomass and N fixation in legume-grass mixtures.
    Grüner E; Wachendorf M; Astor T
    PLoS One; 2020; 15(6):e0234703. PubMed ID: 32584839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images.
    Qi H; Zhu B; Wu Z; Liang Y; Li J; Wang L; Chen T; Lan Y; Zhang L
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detecting Plant Stress Using Thermal and Optical Imagery From an Unoccupied Aerial Vehicle.
    Stutsel B; Johansen K; Malbéteau YM; McCabe MF
    Front Plant Sci; 2021; 12():734944. PubMed ID: 34777418
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crop Performance Evaluation of Chickpea and Dry Pea Breeding Lines Across Seasons and Locations Using Phenomics Data.
    Zhang C; McGee RJ; Vandemark GJ; Sankaran S
    Front Plant Sci; 2021; 12():640259. PubMed ID: 33719318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of Chlorophyll Content in Multi-Temporal Winter Wheat Based on Multispectral and Machine Learning.
    Wang W; Cheng Y; Ren Y; Zhang Z; Geng H
    Front Plant Sci; 2022; 13():896408. PubMed ID: 35712585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data.
    Han L; Yang G; Dai H; Xu B; Yang H; Feng H; Li Z; Yang X
    Plant Methods; 2019; 15():10. PubMed ID: 30740136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenotyping Flowering in Canola (
    Zhang T; Vail S; Duddu HSN; Parkin IAP; Guo X; Johnson EN; Shirtliffe SJ
    Front Plant Sci; 2021; 12():686332. PubMed ID: 34220907
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods.
    Zhang J; Cheng T; Guo W; Xu X; Qiao H; Xie Y; Ma X
    Plant Methods; 2021 May; 17(1):49. PubMed ID: 33941211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.