These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34266447)

  • 61. Estimation of potato above-ground biomass based on unmanned aerial vehicle red-green-blue images with different texture features and crop height.
    Liu Y; Feng H; Yue J; Jin X; Li Z; Yang G
    Front Plant Sci; 2022; 13():938216. PubMed ID: 36092445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.
    Zhao B; Zhang J; Yang C; Zhou G; Ding Y; Shi Y; Zhang D; Xie J; Liao Q
    Front Plant Sci; 2018; 9():1362. PubMed ID: 30298081
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles.
    Yang B; Wang M; Sha Z; Wang B; Chen J; Yao X; Cheng T; Cao W; Zhu Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614815
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.
    Buchaillot ML; Gracia-Romero A; Vergara-Diaz O; Zaman-Allah MA; Tarekegne A; Cairns JE; Prasanna BM; Araus JL; Kefauver SC
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30995754
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative UAV and Field Phenotyping to Assess Yield and Nitrogen Use Efficiency in Hybrid and Conventional Barley.
    Kefauver SC; Vicente R; Vergara-Díaz O; Fernandez-Gallego JA; Kerfal S; Lopez A; Melichar JPE; Serret Molins MD; Araus JL
    Front Plant Sci; 2017; 8():1733. PubMed ID: 29067032
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 67. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.
    Madec S; Baret F; de Solan B; Thomas S; Dutartre D; Jezequel S; Hemmerlé M; Colombeau G; Comar A
    Front Plant Sci; 2017; 8():2002. PubMed ID: 29230229
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of the soil profile quality of subsided land in a coal mining area backfilled with river sediment based on monitoring wheat growth biomass with UAV systems.
    Zhao Y; Lyu X; Xiao W; Tian S; Zhang J; Hu Z; Fu Y
    Environ Monit Assess; 2021 Aug; 193(9):576. PubMed ID: 34392439
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery.
    Li X; Ba Y; Zhang M; Nong M; Yang C; Zhang S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408324
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography.
    Che Y; Wang Q; Xie Z; Zhou L; Li S; Hui F; Wang X; Li B; Ma Y
    Ann Bot; 2020 Sep; 126(4):765-773. PubMed ID: 32432702
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Machine Learning Method for Vision-Based Unmanned Aerial Vehicle Systems to Understand Unknown Environments.
    Zhang T; Hu X; Xiao J; Zhang G
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517309
    [TBL] [Abstract][Full Text] [Related]  

  • 75. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RGB images-based vegetative index for phenotyping kenaf (Hibiscus cannabinus L.).
    Han GD; Jang G; Kim J; Kim DW; Rodrogues R; Kim SH; Kim HJ; Chung YS
    PLoS One; 2021; 16(9):e0256978. PubMed ID: 34492059
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An Optimal Routing Algorithm for Unmanned Aerial Vehicles.
    Kim S; Kwak JH; Oh B; Lee DH; Lee D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572292
    [TBL] [Abstract][Full Text] [Related]  

  • 78. UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane.
    Barbosa Júnior MR; Moreira BRA; de Oliveira RP; Shiratsuchi LS; da Silva RP
    Front Plant Sci; 2023; 14():1114852. PubMed ID: 36818852
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Machine Learning for the Dynamic Positioning of UAVs for Extended Connectivity.
    Oliveira F; Luís M; Sargento S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283165
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cotton Yield Estimation From Aerial Imagery Using Machine Learning Approaches.
    Rodriguez-Sanchez J; Li C; Paterson AH
    Front Plant Sci; 2022; 13():870181. PubMed ID: 35557717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.