BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34267234)

  • 1. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment.
    Satou-Kobayashi Y; Kim JD; Fukamizu A; Asashima M
    Sci Rep; 2021 Jul; 11(1):14537. PubMed ID: 34267234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro.
    Furue M; Myoishi Y; Fukui Y; Ariizumi T; Okamoto T; Asashima M
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15474-9. PubMed ID: 12424341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of cells expressing vascular endothelium markers from undifferentiated Xenopus presumptive ectoderm by co-treatment with activin and angiopoietin-2.
    Nagamine K; Furue M; Fukui A; Asashima M
    Zoolog Sci; 2005 Jul; 22(7):755-61. PubMed ID: 16082164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of activin A-induced differentiation in vitro by vascular endothelial growth factor in Xenopus presumptive ectodermal cells.
    Yoshida S; Furue M; Nagamine K; Abe T; Fukui Y; Myoishi Y; Fujii T; Okamoto T; Taketani Y; Asashima M
    In Vitro Cell Dev Biol Anim; 2005; 41(3-4):104-10. PubMed ID: 16029071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus.
    Ninomiya H; Takahashi S; Tanegashima K; Yokota C; Asashima M
    Dev Growth Differ; 1999 Aug; 41(4):391-400. PubMed ID: 10466926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division.
    Ramis JM; Collart C; Smith JC
    PLoS One; 2007 Feb; 2(2):e213. PubMed ID: 17299593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of BMP-4 in the inducing ability of the head organizer in Xenopus laevis.
    Sedohara A; Fukui A; Michiue T; Asashima M
    Zoolog Sci; 2002 Jan; 19(1):67-80. PubMed ID: 12025406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo.
    Kinoshita K; Bessho T; Asashima M
    Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos.
    Lee SY; Lim SK; Cha SW; Yoon J; Lee SH; Lee HS; Park JB; Lee JY; Kim SC; Kim J
    Differentiation; 2011 Sep; 82(2):99-107. PubMed ID: 21684060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activin-treated ectoderm has complete organizing center activity in Cynops embryos.
    Ninomiya H; Ariizumi T; Asashima M
    Dev Growth Differ; 1998 Apr; 40(2):199-208. PubMed ID: 9572362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel gene, BENI is required for the convergent extension during Xenopus laevis gastrulation.
    Homma M; Inui M; Fukui A; Michiue T; Okabayashi K; Asashima M
    Dev Biol; 2007 Mar; 303(1):270-80. PubMed ID: 17174295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestigial like gene family expression in Xenopus: common and divergent features with other vertebrates.
    Faucheux C; Naye F; Tréguer K; Fédou S; Thiébaud P; Théze N
    Int J Dev Biol; 2010; 54(8-9):1375-82. PubMed ID: 20712000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis.
    Osada SI; Wright CV
    Development; 1999 Jun; 126(14):3229-40. PubMed ID: 10375512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells.
    Miyazaki A; Ishii K; Yamashita S; Nejigane S; Matsukawa S; Ito Y; Onuma Y; Asashima M; Michiue T
    PLoS One; 2012; 7(10):e46630. PubMed ID: 23071603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose and time-dependent mesoderm induction and outgrowth formation by activin A in Xenopus laevis.
    Ariizumi T; Sawamura K; Uchiyama H; Asashima M
    Int J Dev Biol; 1991 Dec; 35(4):407-14. PubMed ID: 1801866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of mesodermal gene expression patterns in early Xenopus embryos: the role of repression.
    Kurth T; Meissner S; Schäckel S; Steinbeisser H
    Dev Dyn; 2005 Jun; 233(2):418-29. PubMed ID: 15779047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction.
    Hawley SH; Wünnenberg-Stapleton K; Hashimoto C; Laurent MN; Watabe T; Blumberg BW; Cho KW
    Genes Dev; 1995 Dec; 9(23):2923-35. PubMed ID: 7498789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling.
    Reich S; Kayastha P; Teegala S; Weinstein DC
    BMC Mol Cell Biol; 2020 May; 21(1):39. PubMed ID: 32466750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3.
    Hansen CS; Marion CD; Steele K; George S; Smith WC
    Development; 1997 Jan; 124(2):483-92. PubMed ID: 9053324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.