These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 34267284)
1. Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes. Jang YR; Jeong R; Kim HS; Park SS Sci Rep; 2021 Jul; 11(1):14551. PubMed ID: 34267284 [TBL] [Abstract][Full Text] [Related]
2. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces. Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883 [TBL] [Abstract][Full Text] [Related]
3. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Wu X; Shao S; Chen Z; Cui Z Nanotechnology; 2017 Jan; 28(3):035203. PubMed ID: 27941231 [TBL] [Abstract][Full Text] [Related]
4. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing. Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153 [TBL] [Abstract][Full Text] [Related]
5. Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink. Chen X; Wu X; Shao S; Zhuang J; Xie L; Nie S; Su W; Chen Z; Cui Z Sci Rep; 2017 Oct; 7(1):13239. PubMed ID: 29038555 [TBL] [Abstract][Full Text] [Related]
6. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics. Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228 [TBL] [Abstract][Full Text] [Related]
7. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes. Yu MH; Joo SJ; Kim HS Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291 [TBL] [Abstract][Full Text] [Related]
8. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures. Tomotoshi D; Oogami R; Kawasaki H ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413 [TBL] [Abstract][Full Text] [Related]
9. Sintering Copper Nanoparticles with Photonic Additive for Printed Conductive Patterns by Intense Pulsed Light. Chung WY; Lai YC; Yonezawa T; Liao YC Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31349711 [TBL] [Abstract][Full Text] [Related]
10. Direct intense pulsed light sintering of inkjet-printed copper oxide layers within six milliseconds. Kang H; Sowade E; Baumann RR ACS Appl Mater Interfaces; 2014 Feb; 6(3):1682-7. PubMed ID: 24433059 [TBL] [Abstract][Full Text] [Related]
11. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering. Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602 [TBL] [Abstract][Full Text] [Related]
12. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique. Joo SJ; Park SH; Moon CJ; Kim HS ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508 [TBL] [Abstract][Full Text] [Related]
13. Metal Coating Synthesized by Inkjet Printing and Intense Pulsed-Light Sintering. Meng F; Huang J; Zhang H; Zhao P; Li P; Wang C Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010131 [TBL] [Abstract][Full Text] [Related]
14. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics. Joo SJ; Hwang HJ; Kim HS Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116 [TBL] [Abstract][Full Text] [Related]
15. One-Step Fabrication of 3D Nanohierarchical Nickel Nanomace Array To Sinter with Silver NPs and the Interfacial Analysis. Zhou W; Zheng Z; Wang C; Wang Z; An R ACS Appl Mater Interfaces; 2017 Feb; 9(5):4798-4807. PubMed ID: 28080029 [TBL] [Abstract][Full Text] [Related]
16. Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals. Paglia F; Vak D; van Embden J; Chesman AS; Martucci A; Jasieniak JJ; Della Gaspera E ACS Appl Mater Interfaces; 2015 Nov; 7(45):25473-8. PubMed ID: 26503740 [TBL] [Abstract][Full Text] [Related]
17. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier. Jha M; Dharmadasa R; Draper GL; Sherehiy A; Sumanasekera G; Amos D; Druffel T Nanotechnology; 2015 May; 26(17):175601. PubMed ID: 25854751 [TBL] [Abstract][Full Text] [Related]
18. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics. Tomotoshi D; Kawasaki H Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267 [TBL] [Abstract][Full Text] [Related]
19. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air. Kanzaki M; Kawaguchi Y; Kawasaki H ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]