BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34267414)

  • 1. Anatomical Labeling of Human Airway Branches using a Novel Two-Step Machine Learning and Hierarchical Features.
    Nadeem SA; Hoffman EA; Comellas AP; Saha PK
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11313():. PubMed ID: 34267414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geodesic Atlas-Based Labeling of Anatomical Trees: Application and Evaluation on Airways Extracted From CT.
    Feragen A; Petersen J; Owen M; Pechin Lo ; Hohwu Thomsen L; Wille MM; Dirksen A; de Bruijne M
    IEEE Trans Med Imaging; 2015 Jun; 34(6):1212-26. PubMed ID: 25532169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.
    Mori K; Ota S; Deguchi D; Kitasaka T; Suenaga Y; Iwano S; Hasegawa Y; Takabatake H; Mori M; Natori H
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):707-14. PubMed ID: 20426174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CT-Based Automated Algorithm for Airway Segmentation Using Freeze-and-Grow Propagation and Deep Learning.
    Nadeem SA; Hoffman EA; Sieren JC; Comellas AP; Bhatt SP; Barjaktarevic IZ; Abtin F; Saha PK
    IEEE Trans Med Imaging; 2021 Jan; 40(1):405-418. PubMed ID: 33021934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated labeling of the airway tree in terms of lobes based on deep learning of bifurcation point detection.
    Wang M; Jin R; Jiang N; Liu H; Jiang S; Li K; Zhou X
    Med Biol Eng Comput; 2020 Sep; 58(9):2009-2024. PubMed ID: 32613598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated lobe-based airway labeling.
    Gu S; Wang Z; Siegfried JM; Wilson D; Bigbee WL; Pu J
    Int J Biomed Imaging; 2012; 2012():382806. PubMed ID: 23093951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chest wall strapping increases expiratory airflow and detectable airway segments in computer tomographic scans of normal and obstructed lungs.
    Taher H; Bauer C; Abston E; Kaczka DW; Bhatt SP; Zabner J; Brower RG; Beichel RR; Eberlein M
    J Appl Physiol (1985); 2018 May; 124(5):1186-1193. PubMed ID: 29357485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features.
    Nadeem SA; Comellas AP; Regan EA; Hoffman EA; Saha PK
    Med Phys; 2024 Jun; 51(6):4201-4218. PubMed ID: 38721977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BranchLabelNet: Anatomical Human Airway Labeling Approach using a Dividing-and-Grouping Multi-Label Classification.
    Chau NK; Ma TT; Kim WJ; Lee CH; Jin GY; Chae KJ; Choi S
    Med Biol Eng Comput; 2024 May; ():. PubMed ID: 38777935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-stage contextual transformer-based convolutional neural network for airway extraction from CT images.
    Wu Y; Zhao S; Qi S; Feng J; Pang H; Chang R; Bai L; Li M; Xia S; Qian W; Ren H
    Artif Intell Med; 2023 Sep; 143():102637. PubMed ID: 37673569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical scheme for geodesic anatomical labeling of airway trees.
    Feragen A; Petersen J; Owen M; Lo P; Thomsen LH; Wille MM; Dirksen A; de Bruijne M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):147-55. PubMed ID: 23286125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric tree kernels: classification of COPD from airway tree geometry.
    Feragen A; Petersen J; Grimm D; Dirksen A; Pedersen JH; Borgwardt K; de Bruijne M
    Inf Process Med Imaging; 2013; 23():171-83. PubMed ID: 24683967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based bronchial tree-guided semi-automatic segmentation of pulmonary segments in computed tomography images.
    Chen Z; Wo BWB; Chan OL; Huang YH; Teng X; Zhang J; Dong Y; Xiao L; Ren G; Cai J
    Quant Imaging Med Surg; 2024 Feb; 14(2):1636-1651. PubMed ID: 38415134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNN: Tree Neural Network for Airway Anatomical Labeling.
    Yu W; Zheng H; Gu Y; Xie F; Yang J; Sun J; Yang GZ
    IEEE Trans Med Imaging; 2023 Jan; 42(1):103-118. PubMed ID: 36063520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
    Xu Z; Bagci U; Kubler A; Luna B; Jain S; Bishai WR; Mollura DJ
    Med Phys; 2013 Nov; 40(11):113701. PubMed ID: 24320475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional airway tree architecture and pulmonary function.
    Pu J; Leader JK; Meng X; Whiting B; Wilson D; Sciurba FC; Reilly JJ; Bigbee WL; Siegfried J; Gur D
    Acad Radiol; 2012 Nov; 19(11):1395-401. PubMed ID: 22884402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated peripancreatic vessel segmentation and labeling based on iterative trunk growth and weakly supervised mechanism.
    Zou L; Cai Z; Mao L; Nie Z; Qiu Y; Yang X
    Artif Intell Med; 2024 Apr; 150():102825. PubMed ID: 38553165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system.
    Mori K; Hasegawa J; Suenaga Y; Toriwaki J
    IEEE Trans Med Imaging; 2000 Feb; 19(2):103-14. PubMed ID: 10784282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.