These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 34267624)

  • 21. Emerging neuromorphic devices.
    Ielmini D; Ambrogio S
    Nanotechnology; 2020 Feb; 31(9):092001. PubMed ID: 31698347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum Topological Neuristors for Advanced Neuromorphic Intelligent Systems.
    Assi DS; Huang H; Karthikeyan V; Theja VCS; de Souza MM; Xi N; Li WJ; Roy VAL
    Adv Sci (Weinh); 2023 Aug; 10(24):e2300791. PubMed ID: 37340871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Management in Neuromorphic Materials, Devices, and Networks.
    Torres F; Basaran AC; Schuller IK
    Adv Mater; 2023 Sep; 35(37):e2205098. PubMed ID: 36067752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors.
    Dang B; Wu Q; Song F; Sun J; Yang M; Ma X; Wang H; Hao Y
    Nanoscale; 2018 Nov; 10(43):20089-20095. PubMed ID: 30357252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications.
    Liu X; Sun C; Ye X; Zhu X; Hu C; Tan H; He S; Shao M; Li RW
    Adv Mater; 2024 Feb; ():e2311472. PubMed ID: 38421081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial Neuronal Devices Based on Emerging Materials: Neuronal Dynamics and Applications.
    Liu H; Qin Y; Chen HY; Wu J; Ma J; Du Z; Wang N; Zou J; Lin S; Zhang X; Zhang Y; Wang H
    Adv Mater; 2023 Sep; 35(37):e2205047. PubMed ID: 36609920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomaterials and their applications on bio-inspired wearable electronics.
    Li J; Xin M; Ma Z; Shi Y; Pan L
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 33592596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Materials for Neuromorphic Devices and Systems.
    Kim MK; Park Y; Kim IJ; Lee JS
    iScience; 2020 Dec; 23(12):101846. PubMed ID: 33319174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuromorphic applications in medicine.
    Aboumerhi K; Güemes A; Liu H; Tenore F; Etienne-Cummings R
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Promising 2D/1D BP-C/CNT Bionic Opto-Olfactory Co-Sensory Artificial Synapses for Multisensory Integration.
    Dong L; Xue B; Wei G; Yuan S; Chen M; Liu Y; Su Y; Niu Y; Xu B; Wang P
    Adv Sci (Weinh); 2024 Jun; ():e2403665. PubMed ID: 38828870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Artificial Sensory Neuron with Tactile Perceptual Learning.
    Wan C; Chen G; Fu Y; Wang M; Matsuhisa N; Pan S; Pan L; Yang H; Wan Q; Zhu L; Chen X
    Adv Mater; 2018 Jul; 30(30):e1801291. PubMed ID: 29882255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial Intelligence Meets Flexible Sensors: Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses.
    Sun T; Feng B; Huo J; Xiao Y; Wang W; Peng J; Li Z; Du C; Wang W; Zou G; Liu L
    Nanomicro Lett; 2023 Nov; 16(1):14. PubMed ID: 37955844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuromorphic Engineering Needs Closed-Loop Benchmarks.
    Milde MB; Afshar S; Xu Y; Marcireau A; Joubert D; Ramesh B; Bethi Y; Ralph NO; El Arja S; Dennler N; van Schaik A; Cohen G
    Front Neurosci; 2022; 16():813555. PubMed ID: 35237122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing.
    Dai S; Liu X; Liu Y; Xu Y; Zhang J; Wu Y; Cheng P; Xiong L; Huang J
    Adv Mater; 2023 Sep; 35(39):e2300329. PubMed ID: 36891745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.