BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 34267766)

  • 1. Variation for Photoperiod and Temperature Sensitivity in the Global Mini Core Collection of Sorghum.
    Upadhyaya HD; Vetriventhan M; Azevedo VCR
    Front Plant Sci; 2021; 12():571243. PubMed ID: 34267766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistance to Foliar Diseases in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Upadhyaya HD; Manjunatha SV; Rao VP; Thakur RP
    Plant Dis; 2012 Nov; 96(11):1629-1633. PubMed ID: 30727452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance to Grain Mold and Downy Mildew in a Mini-Core Collection of Sorghum Germplasm.
    Sharma R; Rao VP; Upadhyaya HD; Reddy VG; Thakur RP
    Plant Dis; 2010 Apr; 94(4):439-444. PubMed ID: 30754520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection.
    Upadhyaya HD; Wang YH; Gowda CL; Sharma S
    Theor Appl Genet; 2013 Aug; 126(8):2003-15. PubMed ID: 23649651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE; Prom LK
    BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative genetic analysis of agronomic and morphological traits in sorghum, Sorghum bicolor.
    Mohammed R; Are AK; Bhavanasi R; Munghate RS; Kavi Kishor PB; Sharma HC
    Front Plant Sci; 2015; 6():945. PubMed ID: 26579183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing Wild
    Sharma S; Paul PJ; Sameer Kumar CV; Nimje C
    Front Plant Sci; 2020; 11():1055. PubMed ID: 32793254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotyping chickpeas and pigeonpeas for adaptation to drought.
    Upadhyaya HD; Kashiwagi J; Varshney RK; Gaur PM; Saxena KB; Krishnamurthy L; Gowda CL; Pundir RP; Chaturvedi SK; Basu PS; Singh IP
    Front Physiol; 2012; 3():179. PubMed ID: 22675307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.
    Rahman H; Bennett RA; Kebede B
    PLoS One; 2018; 13(1):e0189723. PubMed ID: 29320498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association mapping of height and maturity across five environments using the sorghum mini core collection.
    Upadhyaya HD; Wang YH; Sharma S; Singh S
    Genome; 2012 Jun; 55(6):471-9. PubMed ID: 22680231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of agro-morphological variability of dry-season sorghum cultivars in Chad as novel sources of drought tolerance.
    Naoura G; Sawadogo N; Atchozou EA; Emendack Y; Hassan MA; Reoungal D; Amos DN; Djirabaye N; Tabo R; Laza H
    Sci Rep; 2019 Dec; 9(1):19581. PubMed ID: 31863053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Photoperiod-Sensitive Phase in Chickpea (Cicer arietinum L.).
    Daba K; Warkentin TD; Bueckert R; Todd CD; Tar'an B
    Front Plant Sci; 2016; 7():478. PubMed ID: 27148306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum.
    Wolabu TW; Zhang F; Niu L; Kalve S; Bhatnagar-Mathur P; Muszynski MG; Tadege M
    New Phytol; 2016 May; 210(3):946-59. PubMed ID: 26765652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement.
    Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L
    BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association mapping of germinability and seedling vigor in sorghum under controlled low-temperature conditions.
    Upadhyaya HD; Wang YH; Sastry DV; Dwivedi SL; Prasad PV; Burrell AM; Klein RR; Morris GP; Klein PE
    Genome; 2016 Feb; 59(2):137-45. PubMed ID: 26758024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes.
    Cuevas HE; Prom LK; Rosa-Valentin G
    PLoS One; 2018; 13(2):e0191877. PubMed ID: 29444109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global view of genetic diversity in cultivated sorghums using a core collection.
    Deu M; Rattunde F; Chantereau J
    Genome; 2006 Feb; 49(2):168-80. PubMed ID: 16498467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits.
    Girma G; Nida H; Tirfessa A; Lule D; Bejiga T; Seyoum A; Mekonen M; Nega A; Dessalegn K; Birhanu C; Bekele A; Gebreyohannes A; Ayana G; Tesso T; Ejeta G; Mengiste T
    Plant Genome; 2020 Nov; 13(3):e20055. PubMed ID: 33217211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.