These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34267858)

  • 1. Solving 2D Fredholm Integral from Incomplete Measurements Using Compressive Sensing.
    Cloninger A; Czaja W; Bai R; Basser PJ
    SIAM J Imaging Sci; 2014; 7(3):1775-1798. PubMed ID: 34267858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximate solutions to several classes of Volterra and Fredholm integral equations using the neural network algorithm based on the sine-cosine basis function and extreme learning machine.
    Lu Y; Zhang S; Weng F; Sun H
    Front Comput Neurosci; 2023; 17():1120516. PubMed ID: 36968294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random search algorithm for solving the nonlinear Fredholm integral equations of the second kind.
    Hong Z; Yan Z; Yan J
    PLoS One; 2014; 9(7):e103068. PubMed ID: 25072373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covariance Estimation From Compressive Data Partitions Using a Projected Gradient-Based Algorithm.
    Monsalve J; Ramirez J; Esnaola I; Arguello H
    IEEE Trans Image Process; 2022; 31():4817-4827. PubMed ID: 35830408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral technique with convergence analysis for solving one and two-dimensional mixed Volterra-Fredholm integral equation.
    Amin AZ; Amin AK; Abdelkawy MA; Alluhaybi AA; Hashim I
    PLoS One; 2023; 18(5):e0283746. PubMed ID: 37235577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to solve nonlinear Fredholm integral equations of the second kind.
    Li H; Huang J
    Springerplus; 2016; 5():154. PubMed ID: 27026851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimization of Fraction Function Penalty in Compressed Sensing.
    Li H; Zhang Q; Cui A; Peng J
    IEEE Trans Neural Netw Learn Syst; 2020 May; 31(5):1626-1637. PubMed ID: 31329565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blind Compressed Sensing Enables 3-Dimensional Dynamic Free Breathing Magnetic Resonance Imaging of Lung Volumes and Diaphragm Motion.
    Bhave S; Lingala SG; Newell JD; Nagle SK; Jacob M
    Invest Radiol; 2016 Jun; 51(6):387-99. PubMed ID: 26863578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Inverse Problem Solution Scheme for Solving the Optimization Problem of Drug-Controlled Release from Multilaminated Devices.
    Zhang X
    Comput Math Methods Med; 2020; 2020():8380691. PubMed ID: 32802154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensor completion for estimating missing values in visual data.
    Liu J; Musialski P; Wonka P; Ye J
    IEEE Trans Pattern Anal Mach Intell; 2013 Jan; 35(1):208-20. PubMed ID: 22271823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced compressed sensing recovery with level set normals.
    Estellers V; Thiran JP; Bresson X
    IEEE Trans Image Process; 2013 Jul; 22(7):2611-26. PubMed ID: 23529094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving Fredholm Integral Equations Using Deep Learning.
    Guan Y; Fang T; Zhang D; Jin C
    Int J Appl Comput Math; 2022; 8(2):87. PubMed ID: 35372640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new bound on the block restricted isometry constant in compressed sensing.
    Gao Y; Ma M
    J Inequal Appl; 2017; 2017(1):174. PubMed ID: 28824261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.
    Wang D; Wan J; Chen J; Zhang Q
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27669250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error analysis for matrix elastic-net regularization algorithms.
    Li H; Chen N; Li L
    IEEE Trans Neural Netw Learn Syst; 2012 May; 23(5):737-48. PubMed ID: 24806123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Douglas-Rachford Splitting Approach to Compressed Sensing Image Recovery Using Low-Rank Regularization.
    Li S; Qi H
    IEEE Trans Image Process; 2015 Nov; 24(11):4240-9. PubMed ID: 26208347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive sensing by learning a Gaussian mixture model from measurements.
    Yang J; Liao X; Yuan X; Llull P; Brady DJ; Sapiro G; Carin L
    IEEE Trans Image Process; 2015 Jan; 24(1):106-19. PubMed ID: 25361508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthonormal Bernoulli Polynomials for Solving a Class of Two Dimensional Stochastic Volterra-Fredholm Integral Equations.
    Pourdarvish A; Sayevand K; Masti I; Kumar S
    Int J Appl Comput Math; 2022; 8(1):31. PubMed ID: 35097164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive hyperspectral imaging recovery by spatial-spectral non-local means regularization.
    Meza P; Ortiz I; Vera E; Martinez J
    Opt Express; 2018 Mar; 26(6):7043-7055. PubMed ID: 29609390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.