These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34268096)
1. Evaluating Morphological Features of Electrocardiogram Signals for Diagnosing of Myocardial Infarction Using Classification-Based Feature Selection. Mahmoudinejad SA; Safdarian N J Med Signals Sens; 2021; 11(2):79-91. PubMed ID: 34268096 [TBL] [Abstract][Full Text] [Related]
2. Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. Han C; Shi L Comput Methods Programs Biomed; 2019 Jul; 175():9-23. PubMed ID: 31104718 [TBL] [Abstract][Full Text] [Related]
3. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387 [TBL] [Abstract][Full Text] [Related]
4. Multilevel hybrid accurate handcrafted model for myocardial infarction classification using ECG signals. Barua PD; Aydemir E; Dogan S; Kobat MA; Demir FB; Baygin M; Tuncer T; Oh SL; Tan RS; Acharya UR Int J Mach Learn Cybern; 2023; 14(5):1651-1668. PubMed ID: 36467277 [TBL] [Abstract][Full Text] [Related]
5. Electrocardiogram morphological arrhythmia classification using fuzzy entropy-based feature selection and optimal classifier. Chaubey K; Saha S Biomed Phys Eng Express; 2023 Oct; 9(6):. PubMed ID: 37604128 [TBL] [Abstract][Full Text] [Related]
6. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank. Sharma M; Tan RS; Acharya UR Comput Biol Med; 2018 Nov; 102():341-356. PubMed ID: 30049414 [TBL] [Abstract][Full Text] [Related]
7. MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning. He Z; Yuan Z; An P; Zhao J; Du B Comput Methods Programs Biomed; 2021 Oct; 210():106379. PubMed ID: 34517182 [TBL] [Abstract][Full Text] [Related]
8. ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Han C; Shi L Comput Methods Programs Biomed; 2020 Mar; 185():105138. PubMed ID: 31669959 [TBL] [Abstract][Full Text] [Related]
9. Detection and Classification of Myocardial Infarction with Support Vector Machine Classifier Using Grasshopper Optimization Algorithm. Safdarian N; Nezhad SYD; Dabanloo NJ J Med Signals Sens; 2021; 11(3):185-193. PubMed ID: 34466398 [TBL] [Abstract][Full Text] [Related]
10. Automated detection of myocardial infarction using binary Harry Hawks feature selection and ensemble KNN classifier. Chaitanya MK; Sharma LD Comput Methods Biomech Biomed Engin; 2024 Nov; 27(14):2024-2040. PubMed ID: 37861426 [TBL] [Abstract][Full Text] [Related]
11. An interpretable ensemble trees method with joint analysis of static and dynamic features for myocardial infarction detection. Liang C; Sun Q; Li J; Ji B; Wu W; Zhang F; Chen Y; Wang C Physiol Meas; 2024 Aug; 45(8):. PubMed ID: 39025104 [No Abstract] [Full Text] [Related]
12. Automated Myocardial Infarction Screening Using Morphology-Based Electrocardiogram Biomarkers. Jahnavi D; Dash A; Ghosh N; Patra A Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083285 [TBL] [Abstract][Full Text] [Related]
13. Normal and Abnormal Classification of Electrocardiogram: A Primary Screening Tool Kit. Kirodiwal A; Jahnavi D; Dash A; Ghosh N; Patra A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2001-2004. PubMed ID: 36086436 [TBL] [Abstract][Full Text] [Related]
14. A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification. Fang R; Lu CC; Chuang CT; Chang WH Comput Methods Programs Biomed; 2022 Jun; 219():106762. PubMed ID: 35378394 [TBL] [Abstract][Full Text] [Related]
15. A dynamic learning-based ECG feature extraction method for myocardial infarction detection. Sun Q; Xu Z; Liang C; Zhang F; Li J; Liu R; Chen T; Ji B; Chen Y; Wang C Physiol Meas; 2023 Jan; 43(12):. PubMed ID: 36595315 [No Abstract] [Full Text] [Related]
16. [Detection of inferior myocardial infarction based on morphological characteristics]. Xiong P; Qi M; Zhang J; Liu M; Hou Z; Wang H; Liu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):65-71. PubMed ID: 33899429 [TBL] [Abstract][Full Text] [Related]
17. Detection and localization of myocardial infarction using K-nearest neighbor classifier. Arif M; Malagore IA; Afsar FA J Med Syst; 2012 Feb; 36(1):279-89. PubMed ID: 20703720 [TBL] [Abstract][Full Text] [Related]
18. Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features. Tripathy RK; Dandapat S J Med Syst; 2016 Jun; 40(6):143. PubMed ID: 27118009 [TBL] [Abstract][Full Text] [Related]
19. Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals. Adam M; Oh SL; Sudarshan VK; Koh JE; Hagiwara Y; Tan JH; Tan RS; Acharya UR Comput Methods Programs Biomed; 2018 Jul; 161():133-143. PubMed ID: 29852956 [TBL] [Abstract][Full Text] [Related]
20. Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction. Sharma LN; Tripathy RK; Dandapat S IEEE Trans Biomed Eng; 2015 Jul; 62(7):1827-37. PubMed ID: 26087076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]