These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34268211)

  • 21. On the accuracy of ARIMA based prediction of COVID-19 spread.
    Alabdulrazzaq H; Alenezi MN; Rawajfih Y; Alghannam BA; Al-Hassan AA; Al-Anzi FS
    Results Phys; 2021 Aug; 27():104509. PubMed ID: 34307005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of the unemployment rate in Turkey: A comparison of the ARIMA and machine learning models including Covid-19 pandemic periods.
    Yamacli DS; Yamacli S
    Heliyon; 2023 Jan; 9(1):e12796. PubMed ID: 36691554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of Temporal Model for Forecasting of Helicoverpa armigera (Noctuidae: Lepidopetra) Using Arima and Artificial Neural Networks.
    Narava R; D V SRK; Jaba J; P AK; G V RR; V SR; Mishra SP; Kukanur V
    J Insect Sci; 2022 May; 22(3):. PubMed ID: 35512683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prognosticating the Spread of Covid-19 Pandemic Based on Optimal Arima Estimators.
    Sandhir V; Kumar V; Kumar V
    Endocr Metab Immune Disord Drug Targets; 2021; 21(4):586-591. PubMed ID: 33121426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of robustness of hybrid artificial neural network with artificial bee colony and firefly algorithm in predicting COVID-19 new cases: case study of Iran.
    Shaibani MJ; Emamgholipour S; Moazeni SS
    Stoch Environ Res Risk Assess; 2022; 36(9):2461-2476. PubMed ID: 34608374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks.
    Saba AI; Elsheikh AH
    Process Saf Environ Prot; 2020 Sep; 141():1-8. PubMed ID: 32501368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
    Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review.
    Ghafouri-Fard S; Mohammad-Rahimi H; Motie P; Minabi MAS; Taheri M; Nateghinia S
    Heliyon; 2021 Oct; 7(10):e08143. PubMed ID: 34660935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study on the prediction of the BP artificial neural network model and the ARIMA model in the incidence of AIDS.
    Li Z; Li Y
    BMC Med Inform Decis Mak; 2020 Jul; 20(1):143. PubMed ID: 32616052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling Palestinian COVID-19 Cumulative Confirmed Cases: A Comparative Study.
    Dawoud I
    Infect Dis Model; 2020; 5():748-754. PubMed ID: 32984666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forecasting spread of COVID-19 using google trends: A hybrid GWO-deep learning approach.
    Prasanth S; Singh U; Kumar A; Tikkiwal VA; Chong PHJ
    Chaos Solitons Fractals; 2021 Jan; 142():110336. PubMed ID: 33110297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance Evaluation of Soft Computing Approaches for Forecasting COVID-19 Pandemic Cases.
    Shoaib M; Salahudin H; Hammad M; Ahmad S; Khan AA; Khan MM; Baig MAI; Ahmad F; Ullah MK
    SN Comput Sci; 2021; 2(5):372. PubMed ID: 34258586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing the future progression of COVID-19 in Iran and its neighbors using Bayesian models.
    Feroze N
    Infect Dis Model; 2021; 6():343-350. PubMed ID: 33521407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forecasting COVID-19 situation in Bangladesh.
    Nesa MK; Babu MR; Mamun Khan MT
    Biosaf Health; 2022 Feb; 4(1):6-10. PubMed ID: 34977530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis.
    Zhai M; Li W; Tie P; Wang X; Xie T; Ren H; Zhang Z; Song W; Quan D; Li M; Chen L; Qiu L
    BMC Infect Dis; 2021 Mar; 21(1):280. PubMed ID: 33740904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks.
    Wu W; An SY; Guan P; Huang DS; Zhou BS
    BMC Infect Dis; 2019 May; 19(1):414. PubMed ID: 31088391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models.
    Wang Y; Yan Z; Wang D; Yang M; Li Z; Gong X; Wu D; Zhai L; Zhang W; Wang Y
    BMC Infect Dis; 2022 May; 22(1):495. PubMed ID: 35614387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Evaluation of the Multilayer Perceptron Approach with Conventional ARIMA in Modeling and Prediction of COVID-19 Daily Death Cases.
    Qureshi M; Daniyal M; Tawiah K
    J Healthc Eng; 2022; 2022():4864920. PubMed ID: 36406332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical modeling and a month ahead forecast of the coronavirus disease 2019 (COVID-19) pandemic: an Indian scenario.
    Ganiny S; Nisar O
    Model Earth Syst Environ; 2021; 7(1):29-40. PubMed ID: 33490366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of the outbreak risk, mapping and infection behavior of COVID-19: Application of the autoregressive integrated-moving average (ARIMA) and polynomial models.
    Pourghasemi HR; Pouyan S; Farajzadeh Z; Sadhasivam N; Heidari B; Babaei S; Tiefenbacher JP
    PLoS One; 2020; 15(7):e0236238. PubMed ID: 32722716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.