These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 34268407)
1. Mortality prediction for patients with acute respiratory distress syndrome based on machine learning: a population-based study. Huang B; Liang D; Zou R; Yu X; Dan G; Huang H; Liu H; Liu Y Ann Transl Med; 2021 May; 9(9):794. PubMed ID: 34268407 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis. Zeng Z; Yao S; Zheng J; Gong X BioData Min; 2021 Aug; 14(1):40. PubMed ID: 34399809 [TBL] [Abstract][Full Text] [Related]
3. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
4. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
5. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning. Yang B; Zhu Y; Lu X; Shen C Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312 [TBL] [Abstract][Full Text] [Related]
6. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation. Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962 [TBL] [Abstract][Full Text] [Related]
7. [Predictive value of machine learning for in-hospital mortality for trauma-induced acute respiratory distress syndrome patients: an analysis using the data from MIMIC III]. Tang R; Tang W; Wang D Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Mar; 34(3):260-264. PubMed ID: 35574742 [TBL] [Abstract][Full Text] [Related]
8. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
9. [Predicting prolonged length of intensive care unit stay Wu JY; Lin Y; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Dec; 53(6):1163-1170. PubMed ID: 34916699 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a risk stratification model for predicting the mortality of acute kidney injury in critical care patients. Huang H; Liu Y; Wu M; Gao Y; Yu X Ann Transl Med; 2021 Feb; 9(4):323. PubMed ID: 33708950 [TBL] [Abstract][Full Text] [Related]
11. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
12. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients. Lin S; Yang M; Liu C; Wang Z; Long X Int J Med Inform; 2024 Jun; 186():105397. PubMed ID: 38507979 [TBL] [Abstract][Full Text] [Related]
13. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study. Kim YK; Seo WD; Lee SJ; Koo JH; Kim GC; Song HS; Lee M J Med Internet Res; 2024 Sep; 26():e62890. PubMed ID: 39288404 [TBL] [Abstract][Full Text] [Related]
14. A generalizable and interpretable model for mortality risk stratification of sepsis patients in intensive care unit. Zhuang J; Huang H; Jiang S; Liang J; Liu Y; Yu X BMC Med Inform Decis Mak; 2023 Sep; 23(1):185. PubMed ID: 37715194 [TBL] [Abstract][Full Text] [Related]
15. Comparison of different intensive care scoring systems and Glasgow Aneurysm score for aortic aneurysm in predicting 28-day mortality: a retrospective cohort study from MIMIC-IV database. Wang H; Wu S; Pan D; Ning Y; Li Y; Feng C; Guo J; Liu Z; Gu Y BMC Cardiovasc Disord; 2024 Sep; 24(1):513. PubMed ID: 39333879 [TBL] [Abstract][Full Text] [Related]
16. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337 [TBL] [Abstract][Full Text] [Related]
17. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model. Lin K; Hu Y; Kong G Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181 [TBL] [Abstract][Full Text] [Related]
18. Oxygenation Saturation Index Predicts Clinical Outcomes in ARDS. DesPrez K; McNeil JB; Wang C; Bastarache JA; Shaver CM; Ware LB Chest; 2017 Dec; 152(6):1151-1158. PubMed ID: 28823812 [TBL] [Abstract][Full Text] [Related]
19. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
20. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]