These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 34268407)

  • 21. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure.
    Chen Z; Li T; Guo S; Zeng D; Wang K
    Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.
    Wang Z; Zhang L; Huang T; Yang R; Cheng H; Wang H; Yin H; Lyu J
    Heart Lung; 2023; 58():74-81. PubMed ID: 36423504
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning.
    Sayed M; Riaño D; Villar J
    J Clin Med; 2021 Aug; 10(17):. PubMed ID: 34501270
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit.
    Zhang Y; Hu J; Hua T; Zhang J; Zhang Z; Yang M
    Sci Rep; 2023 Aug; 13(1):12697. PubMed ID: 37542106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU.
    Xie W; Li Y; Meng X; Zhao M
    Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study.
    Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T
    Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation a nomogram prediction model for early diagnosis of bloodstream infections in the intensive care unit.
    Qi Z; Dong L; Lin J; Duan M
    Front Cell Infect Microbiol; 2024; 14():1348896. PubMed ID: 38500500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of in-hospital Mortality of Intensive Care Unit Patients with Acute Pancreatitis Based on an Explainable Machine Learning Algorithm.
    Ren W; Zou K; Huang S; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Tang X; Lü M
    J Clin Gastroenterol; 2024 Jul; 58(6):619-626. PubMed ID: 37712768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An interpretable machine learning model for predicting 28-day mortality in patients with sepsis-associated liver injury.
    Wen C; Zhang X; Li Y; Xiao W; Hu Q; Lei X; Xu T; Liang S; Gao X; Zhang C; Yu Z; Lü M
    PLoS One; 2024; 19(5):e0303469. PubMed ID: 38768153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and Validation of a Dynamic Nomogram for Predicting in-Hospital Mortality in Patients with Acute Pancreatitis: A Retrospective Cohort Study in the Intensive Care Unit.
    Zou K; Huang S; Ren W; Xu H; Zhang W; Shi X; Shi L; Zhong X; Peng Y; Lü M; Tang X
    Int J Gen Med; 2023; 16():2541-2553. PubMed ID: 37351008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and validation of a model for the early prediction of the RRT requirement in patients with rhabdomyolysis.
    Liu C; Yuan Q; Mao Z; Hu P; Wu R; Liu X; Hong Q; Chi K; Geng X; Sun X
    Am J Emerg Med; 2021 Aug; 46():38-44. PubMed ID: 33714053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of key predictors of hospital mortality in critically ill patients with embolic stroke using machine learning.
    Liu W; Ma W; Bai N; Li C; Liu K; Yang J; Zhang S; Zhu K; Zhou Q; Liu H; Guo J; Li L
    Biosci Rep; 2022 Sep; 42(9):. PubMed ID: 35993194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach.
    Desautels T; Calvert J; Hoffman J; Jay M; Kerem Y; Shieh L; Shimabukuro D; Chettipally U; Feldman MD; Barton C; Wales DJ; Das R
    JMIR Med Inform; 2016 Sep; 4(3):e28. PubMed ID: 27694098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database.
    Lu Z; Zhang J; Hong J; Wu J; Liu Y; Xiao W; Hua T; Yang M
    Front Med (Lausanne); 2021; 8():661710. PubMed ID: 33889591
    [No Abstract]   [Full Text] [Related]  

  • 35. The Value of Oxygenation Saturation Index in Predicting the Outcomes of Patients with Acute Respiratory Distress Syndrome.
    Chen WL; Lin WT; Kung SC; Lai CC; Chao CM
    J Clin Med; 2018 Aug; 7(8):. PubMed ID: 30096809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment.
    Bai Y; Xia J; Huang X; Chen S; Zhan Q
    Front Physiol; 2022; 13():1050849. PubMed ID: 36579020
    [No Abstract]   [Full Text] [Related]  

  • 37. SAPS III is superior to SOFA for predicting 28-day mortality in sepsis patients based on Sepsis 3.0 criteria.
    Zhu Y; Zhang R; Ye X; Liu H; Wei J
    Int J Infect Dis; 2022 Jan; 114():135-141. PubMed ID: 34775116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relationship between hematocrit and serum albumin levels difference and mortality in elderly sepsis patients in intensive care units-a retrospective study based on two large database.
    Wang Z; Zhang L; Li S; Xu F; Han D; Wang H; Huang T; Yin H; Lyu J
    BMC Infect Dis; 2022 Jul; 22(1):629. PubMed ID: 35850582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Simple Weaning Model Based on Interpretable Machine Learning Algorithm for Patients With Sepsis: A Research of MIMIC-IV and eICU Databases.
    Liu W; Tao G; Zhang Y; Xiao W; Zhang J; Liu Y; Lu Z; Hua T; Yang M
    Front Med (Lausanne); 2021; 8():814566. PubMed ID: 35118099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis.
    Pattharanitima P; Thongprayoon C; Kaewput W; Qureshi F; Qureshi F; Petnak T; Srivali N; Gembillo G; O'Corragain OA; Chesdachai S; Vallabhajosyula S; Guru PK; Mao MA; Garovic VD; Dillon JJ; Cheungpasitporn W
    J Clin Med; 2021 Oct; 10(21):. PubMed ID: 34768540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.