These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 34268407)

  • 41. A Simple Nomogram for Predicting Hospital Mortality of Patients Over 80 Years in ICU: An International Multicenter Retrospective Study.
    Liu C; Liu X; Hu M; Mao Z; Zhou Y; Peng J; Geng X; Chi K; Hong Q; Cao D; Sun X; Zhang Z; Zhou F
    J Gerontol A Biol Sci Med Sci; 2023 Jul; 78(7):1227-1233. PubMed ID: 37162208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting Prolonged Length of ICU Stay through Machine Learning.
    Wu J; Lin Y; Li P; Hu Y; Zhang L; Kong G
    Diagnostics (Basel); 2021 Nov; 11(12):. PubMed ID: 34943479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A New Risk Model based on the Machine Learning Approach for Prediction of Mortality in the Respiratory Intensive Care Unit.
    Yan P; Huang S; Li Y; Chen T; Li X; Zhang Y; Wu H; Xu J; Xie G; Xie L; Mo G
    Curr Pharm Biotechnol; 2023; 24(13):1673-1681. PubMed ID: 36825694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Machine learning models for mortality prediction in critically ill patients with acute pancreatitis-associated acute kidney injury.
    Liu Y; Zhu X; Xue J; Maimaitituerxun R; Chen W; Dai W
    Clin Kidney J; 2024 Oct; 17(10):sfae284. PubMed ID: 39385947
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Application of support vector machine in predicting in-hospital mortality risk of patients with acute kidney injury in ICU].
    Lin K; Xie JQ; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):239-244. PubMed ID: 29643521
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury.
    Luo XQ; Yan P; Duan SB; Kang YX; Deng YH; Liu Q; Wu T; Wu X
    Front Med (Lausanne); 2022; 9():853102. PubMed ID: 35783603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Nomogram for Predicting the Mortality of Patients with Acute Respiratory Distress Syndrome.
    Wang Z; Xing L; Cui H; Fu G; Zhao H; Huang M; Zhao Y; Xu J
    J Healthc Eng; 2022; 2022():5940900. PubMed ID: 35432833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performance of Simplified Acute Physiology Score 3 In Predicting Hospital Mortality In Emergency Intensive Care Unit.
    Ma QB; Fu YW; Feng L; Zhai QR; Liang Y; Wu M; Zheng YA
    Chin Med J (Engl); 2017 Jul; 130(13):1544-1551. PubMed ID: 28639569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel criteria to classify ARDS severity using a machine learning approach.
    Sayed M; Riaño D; Villar J
    Crit Care; 2021 Apr; 25(1):150. PubMed ID: 33879214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel pneumonia score based on a machine learning model for predicting mortality in pneumonia patients on admission to the intensive care unit.
    Wang B; Li Y; Tian Y; Ju C; Xu X; Pei S
    Respir Med; 2023 Oct; 217():107363. PubMed ID: 37451647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation.
    Lim L; Gim U; Cho K; Yoo D; Ryu HG; Lee HC
    Crit Care; 2024 Mar; 28(1):76. PubMed ID: 38486247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Developing and validating a prediction model for in-hospital mortality in patients with ventilator-associated pneumonia in the ICU.
    Han X; Wu W; Zhao H; Wang S
    Ann Palliat Med; 2022 May; 11(5):1799-1810. PubMed ID: 35672896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
    Huang T; Le D; Yuan L; Xu S; Peng X
    PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms.
    Wang R; Cai L; Zhang J; He M; Xu J
    Medicina (Kaunas); 2023 Jan; 59(1):. PubMed ID: 36676795
    [No Abstract]   [Full Text] [Related]  

  • 55. Performance of intensive care unit severity scoring systems across different ethnicities in the USA: a retrospective observational study.
    Sarkar R; Martin C; Mattie H; Gichoya JW; Stone DJ; Celi LA
    Lancet Digit Health; 2021 Apr; 3(4):e241-e249. PubMed ID: 33766288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of acute kidney injury in patients with liver cirrhosis using machine learning models: evidence from the MIMIC-III and MIMIC-IV.
    Tian J; Cui R; Song H; Zhao Y; Zhou T
    Int Urol Nephrol; 2024 Jan; 56(1):237-247. PubMed ID: 37256426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY IN PATIENTS WITH SEPSIS-ASSOCIATED ACUTE RESPIRATORY DISTRESS SYNDROME.
    Zhou Y; Feng J; Mei S; Zhong H; Tang R; Xing S; Gao Y; Xu Q; He Z
    Shock; 2023 Mar; 59(3):352-359. PubMed ID: 36625493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Diagnostic value of mechanical power in patients with moderate to severe acute respiratory distress syndrome: an analysis using the data from MIMIC-III].
    Yan Y; Xie Y; Wang Y; Chen X; Sun Y; Du Z; Li X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Jan; 34(1):35-40. PubMed ID: 35307058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database.
    Safaei N; Safaei B; Seyedekrami S; Talafidaryani M; Masoud A; Wang S; Li Q; Moqri M
    PLoS One; 2022; 17(5):e0262895. PubMed ID: 35511882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine Learning Prediction Models for Mechanically Ventilated Patients: Analyses of the MIMIC-III Database.
    Zhu Y; Zhang J; Wang G; Yao R; Ren C; Chen G; Jin X; Guo J; Liu S; Zheng H; Chen Y; Guo Q; Li L; Du B; Xi X; Li W; Huang H; Li Y; Yu Q
    Front Med (Lausanne); 2021; 8():662340. PubMed ID: 34277655
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.