These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
609 related articles for article (PubMed ID: 34268407)
61. Machine learning-based prediction of in-hospital mortality for critically ill patients with sepsis-associated acute kidney injury. Gao T; Nong Z; Luo Y; Mo M; Chen Z; Yang Z; Pan L Ren Fail; 2024 Dec; 46(1):2316267. PubMed ID: 38369749 [TBL] [Abstract][Full Text] [Related]
62. Machine learning-based prediction model of acute kidney injury in patients with acute respiratory distress syndrome. Wei S; Zhang Y; Dong H; Chen Y; Wang X; Zhu X; Zhang G; Guo S BMC Pulm Med; 2023 Oct; 23(1):370. PubMed ID: 37789305 [TBL] [Abstract][Full Text] [Related]
63. Novel Oxygenation and Saturation Indices for Mortality Prediction in COVID-19 ARDS Patients: The Impact of Driving Pressure and Mechanical Power. Aşar S; Rahim F; Rahimi P; Acicbe Ö; Tontu F; Çukurova Z J Intensive Care Med; 2024 Jun; 39(6):595-608. PubMed ID: 38179691 [No Abstract] [Full Text] [Related]
64. Performance of Sequential Organ Failure Assessment and Simplified Acute Physiology Score II for Post-Cardiac Surgery Patients in Intensive Care Unit. Xu F; Li W; Zhang C; Cao R Front Cardiovasc Med; 2021; 8():774935. PubMed ID: 34938790 [No Abstract] [Full Text] [Related]
65. Development and validation of a nomogram for predicting in-hospital mortality of intensive care unit patients with liver cirrhosis. Tang XW; Ren WS; Huang S; Zou K; Xu H; Shi XM; Zhang W; Shi L; Lü MH World J Hepatol; 2024 Apr; 16(4):625-639. PubMed ID: 38689750 [TBL] [Abstract][Full Text] [Related]
66. Construction and validation of machine learning models for sepsis prediction in patients with acute pancreatitis. Liu F; Yao J; Liu C; Shou S BMC Surg; 2023 Sep; 23(1):267. PubMed ID: 37658375 [TBL] [Abstract][Full Text] [Related]
67. Machine learning for the early prediction of acute respiratory distress syndrome (ARDS) in patients with sepsis in the ICU based on clinical data. Jiang Z; Liu L; Du L; Lv S; Liang F; Luo Y; Wang C; Shen Q Heliyon; 2024 Mar; 10(6):e28143. PubMed ID: 38533071 [TBL] [Abstract][Full Text] [Related]
68. Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study. Nistal-Nuño B Einstein (Sao Paulo); 2024; 22():eAO0467. PubMed ID: 39417479 [TBL] [Abstract][Full Text] [Related]
69. A nomogram for predicting hospital mortality of critical ill patients with sepsis and cancer: a retrospective cohort study based on MIMIC-IV and eICU-CRD. Yuan ZN; Xue YJ; Wang HJ; Qu SN; Huang CL; Wang H; Zhang H; Xing XZ BMJ Open; 2023 Sep; 13(9):e072112. PubMed ID: 37696627 [TBL] [Abstract][Full Text] [Related]
70. Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction. Ouyang Y; Cheng M; He B; Zhang F; Ouyang W; Zhao J; Qu Y Comput Methods Programs Biomed; 2023 Apr; 231():107431. PubMed ID: 36827826 [TBL] [Abstract][Full Text] [Related]
71. Predicting Mortality in Sepsis-Associated Acute Respiratory Distress Syndrome: A Machine Learning Approach Using the MIMIC-III Database. Mu S; Yan D; Tang J; Zheng Z J Intensive Care Med; 2024 Sep; ():8850666241281060. PubMed ID: 39234770 [TBL] [Abstract][Full Text] [Related]
72. Development and validation of a clinical risk model to predict the hospital mortality in ventilated patients with acute respiratory distress syndrome: a population-based study. Ye W; Li R; Liang H; Huang Y; Xu Y; Li Y; Ou L; Mao P; Liu X; Li Y BMC Pulm Med; 2022 Jul; 22(1):268. PubMed ID: 35820835 [TBL] [Abstract][Full Text] [Related]
73. Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database. Pang K; Li L; Ouyang W; Liu X; Tang Y Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626224 [No Abstract] [Full Text] [Related]
74. Outcome Prediction in Critically-Ill Patients with Venous Thromboembolism and/or Cancer Using Machine Learning Algorithms: External Validation and Comparison with Scoring Systems. Danilatou V; Nikolakakis S; Antonakaki D; Tzagkarakis C; Mavroidis D; Kostoulas T; Ioannidis S Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806137 [TBL] [Abstract][Full Text] [Related]
75. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis. Zhao QY; Liu LP; Luo JC; Luo YW; Wang H; Zhang YJ; Gui R; Tu GW; Luo Z Front Med (Lausanne); 2020; 7():637434. PubMed ID: 33553224 [No Abstract] [Full Text] [Related]
76. Correlation and Prognostic Significance of Oxygenation Indices in Invasively Ventilated Adults (OXIVA-CARDS) with COVID-19-associated ARDS: A Retrospective Study. Vadi S; Suthar D; Sanwalka N Indian J Crit Care Med; 2023 Nov; 27(11):801-805. PubMed ID: 37936792 [TBL] [Abstract][Full Text] [Related]
77. Development and validation of a deep learning model to predict the survival of patients in ICU. Tang H; Jin Z; Deng J; She Y; Zhong Y; Sun W; Ren Y; Cao N; Chen C J Am Med Inform Assoc; 2022 Aug; 29(9):1567-1576. PubMed ID: 35751440 [TBL] [Abstract][Full Text] [Related]
78. External validation of the APPS, a new and simple outcome prediction score in patients with the acute respiratory distress syndrome. Bos LD; Schouten LR; Cremer OL; Ong DSY; Schultz MJ; Ann Intensive Care; 2016 Dec; 6(1):89. PubMed ID: 27638132 [TBL] [Abstract][Full Text] [Related]
79. [Risk factors analysis of acute respiratory distress syndrome in intensive care unit traumatic patients]. Li X; Yu J; Huang W; Huang Q; Yan J; Liang H; Sun Y Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2018 Oct; 30(10):978-982. PubMed ID: 30439321 [TBL] [Abstract][Full Text] [Related]
80. A Machine Learning-Based Prediction Model for Acute Kidney Injury in Patients With Congestive Heart Failure. Peng X; Li L; Wang X; Zhang H Front Cardiovasc Med; 2022; 9():842873. PubMed ID: 35310995 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]