These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34268444)

  • 21. Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering.
    Alku P; Magi C; Yrttiaho S; Bäckström T; Story B
    J Acoust Soc Am; 2009 May; 125(5):3289-305. PubMed ID: 19425671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glottal closure, transglottal airflow, and voice quality in healthy middle-aged women.
    Södersten M; Hertegård S; Hammarberg B
    J Voice; 1995 Jun; 9(2):182-97. PubMed ID: 7620541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kalman Filter Implementation of Subglottal Impedance-Based Inverse Filtering to Estimate Glottal Airflow during Phonation.
    Cortés JP; Alzamendi GA; Weinstein AJ; Yuz JI; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Appl Sci (Basel); 2022 Jan; 12(1):. PubMed ID: 36313121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of bandwidth on glottal airflow waveforms estimated by inverse filtering.
    Alku P; Vilkman E
    J Acoust Soc Am; 1995 Aug; 98(2 Pt 1):763-7. PubMed ID: 7642814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glottal Aerodynamics Estimated From Neck-Surface Vibration in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Mehta DD; Van Stan JH; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2020 Sep; 63(9):2861-2869. PubMed ID: 32755502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glottal Airflow Estimation using Neck Surface Acceleration and Low-Order Kalman Smoothing.
    Morales A; Yuz JI; Cortés JP; Fontanet JG; Zañartu M
    IEEE/ACM Trans Audio Speech Lang Process; 2023; 31():2055-2066. PubMed ID: 38130818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A flow waveform-matched low-dimensional glottal model based on physical knowledge.
    Drioli C
    J Acoust Soc Am; 2005 May; 117(5):3184-95. PubMed ID: 15957786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice.
    Holmberg EB; Hillman RE; Perkell JS
    J Acoust Soc Am; 1988 Aug; 84(2):511-29. PubMed ID: 3170944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TKK Aparat: an environment for voice inverse filtering and parameterization.
    Airas M
    Logoped Phoniatr Vocol; 2008; 33(1):49-64. PubMed ID: 18344143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Source-filter comparison of measurements of fundamental frequency perturbation and amplitude perturbation for synthesized voice signals.
    Murphy P
    J Voice; 2008 Mar; 22(2):125-37. PubMed ID: 17147983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glottal characteristics of female speakers: acoustic correlates.
    Hanson HM
    J Acoust Soc Am; 1997 Jan; 101(1):466-81. PubMed ID: 9000737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nonlinear operator-based speech feature analysis method with application to vocal fold pathology assessment.
    Hansen JH; Gavidia-Ceballos L; Kaiser JF
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):300-13. PubMed ID: 9509746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formant-Aware Spectral Analysis of Sustained Vowels of Pathological Breathy Voice.
    Ikuma T; McWhorter AJ; Oral E; Kunduk M
    J Voice; 2023 Jun; ():. PubMed ID: 37302909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification of voice quality using neck-surface acceleration: Comparison with glottal flow and radiated sound.
    Włodarczak M; Ludusan B; Sundberg J; Heldner M
    J Voice; 2022 Aug; ():. PubMed ID: 36028369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.