These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34268539)

  • 1. Unconventional acoustic approaches for localized and designed micromanipulation.
    Kolesnik K; Xu M; Lee PVS; Rajagopal V; Collins DJ
    Lab Chip; 2021 Aug; 21(15):2837-2856. PubMed ID: 34268539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reusable acoustic tweezers for disposable devices.
    Guo F; Xie Y; Li S; Lata J; Ren L; Mao Z; Ren B; Wu M; Ozcelik A; Huang TJ
    Lab Chip; 2015 Dec; 15(24):4517-23. PubMed ID: 26507411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubbles in microfluidics: an all-purpose tool for micromanipulation.
    Li Y; Liu X; Huang Q; Ohta AT; Arai T
    Lab Chip; 2021 Mar; 21(6):1016-1035. PubMed ID: 33538756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves.
    Liu Y; Yin Q; Luo Y; Huang Z; Cheng Q; Zhang W; Zhou B; Zhou Y; Ma Z
    Ultrason Sonochem; 2023 Jun; 96():106441. PubMed ID: 37216791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-wavelength acoustic stencil for tailored micropatterning.
    Kolesnik K; Segeritz P; Scott DJ; Rajagopal V; Collins DJ
    Lab Chip; 2023 May; 23(10):2447-2457. PubMed ID: 37042175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing.
    Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ
    Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing.
    Rasouli R; Villegas KM; Tabrizian M
    Lab Chip; 2023 Mar; 23(5):1300-1338. PubMed ID: 36806847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves.
    Aubert V; Wunenburger R; Valier-Brasier T; Rabaud D; Kleman JP; Poulain C
    Lab Chip; 2016 Jul; 16(13):2532-9. PubMed ID: 27292590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications.
    Connacher W; Zhang N; Huang A; Mei J; Zhang S; Gopesh T; Friend J
    Lab Chip; 2018 Jul; 18(14):1952-1996. PubMed ID: 29922774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-switching: a new technique for electronically varying the agglomeration position in an acoustic particle manipulator.
    Glynne-Jones P; Boltryk RJ; Harris NR; Cranny AW; Hill M
    Ultrasonics; 2010 Jan; 50(1):68-75. PubMed ID: 19709711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroBubble activated acoustic cell sorting.
    Faridi MA; Ramachandraiah H; Iranmanesh I; Grishenkov D; Wiklund M; Russom A
    Biomed Microdevices; 2017 Jun; 19(2):23. PubMed ID: 28374278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic Sorting of Submicrometer Particles and Extracellular Vesicles Using a Combined Electric and Acoustic Field.
    Tayebi M; Yang D; Collins DJ; Ai Y
    Nano Lett; 2021 Aug; 21(16):6835-6842. PubMed ID: 34355908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic Rayleigh streaming vortices and Eckart flow arising from traveling-wave-based diffractive acoustic fields.
    Kolesnik K; Hashemzadeh P; Peng D; Stamp MEM; Tong W; Rajagopal V; Miansari M; Collins DJ
    Phys Rev E; 2021 Oct; 104(4-2):045104. PubMed ID: 34781567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.