These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34268545)

  • 1. Controlled deposition of nanoparticles with critical Casimir forces.
    Marino E; Vasilyev OA; Kluft BB; Stroink MJB; Kondrat S; Schall P
    Nanoscale Horiz; 2021 Sep; 6(9):751-758. PubMed ID: 34268545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Debye vs. Casimir: controlling the structure of charged nanoparticles deposited on a substrate.
    Vasilyev OA; Marino E; Kluft BB; Schall P; Kondrat S
    Nanoscale; 2021 Apr; 13(13):6475-6488. PubMed ID: 33885527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications.
    Yang J; Choi MK; Kim DH; Hyeon T
    Adv Mater; 2016 Feb; 28(6):1176-207. PubMed ID: 26707709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Superstructure-Property Relationships via Critical Casimir Assembly of Quantum Dots.
    Marino E; Balazs DM; Crisp RW; Hermida-Merino D; Loi MA; Kodger TE; Schall P
    J Phys Chem C Nanomater Interfaces; 2019 Jun; 123(22):13451-13457. PubMed ID: 31205576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Formation of Honeycomb Superlattices from PbSe Quantum Dots: The Role of Solvent-Mediated Repulsion and Facet-to-Facet Attraction in NC Self-Assembly and Alignment.
    van der Sluijs MM; Sanders D; Jansen KJ; Soligno G; Vanmaekelbergh D; Peters JL
    J Phys Chem C Nanomater Interfaces; 2022 Jan; 126(2):986-996. PubMed ID: 35087608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of colloidal cube superstructures with critical Casimir attractions.
    Kennedy CL; Sayasilpi D; Schall P; Meijer JM
    J Phys Condens Matter; 2022 Mar; 34(21):. PubMed ID: 35203069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Shape-Induced Orientation Phase within 3D Nanocrystal Solids.
    Burian M; Karner C; Yarema M; Heiss W; Amenitsch H; Dellago C; Lechner RT
    Adv Mater; 2018 Aug; 30(32):e1802078. PubMed ID: 29944182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.
    Caruntu D; Rostamzadeh T; Costanzo T; Parizi SS; Caruntu G
    Nanoscale; 2015 Aug; 7(30):12955-69. PubMed ID: 26168304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing Driving Forces in Quantum Dot Supercrystal Assembly.
    Marino E; Kodger TE; Wegdam GH; Schall P
    Adv Mater; 2018 Oct; 30(43):e1803433. PubMed ID: 30133015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoalignment by critical Casimir torques.
    Wang G; Nowakowski P; Farahmand Bafi N; Midtvedt B; Schmidt F; Callegari A; Verre R; Käll M; Dietrich S; Kondrat S; Volpe G
    Nat Commun; 2024 Jun; 15(1):5086. PubMed ID: 38876993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Patchy Bonds Induced by Critical Casimir Forces.
    Nguyen TA; Newton A; Kraft DJ; Bolhuis PG; Schall P
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29099788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching Colloidal Superstructures by Critical Casimir Forces.
    Nguyen TA; Newton A; Veen SJ; Kraft DJ; Bolhuis PG; Schall P
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28692773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-bridging of vertical silicon nanowires and a universal capacitive force model for spontaneous attraction in nanostructures.
    Sun Z; Wang D; Xiang J
    ACS Nano; 2014 Nov; 8(11):11261-7. PubMed ID: 25329454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
    Pinkard A; Champsaur AM; Roy X
    Acc Chem Res; 2018 Apr; 51(4):919-929. PubMed ID: 29605996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Casimir forces on a silicon micromechanical chip.
    Zou J; Marcet Z; Rodriguez AW; Reid MT; McCauley AP; Kravchenko II; Lu T; Bao Y; Johnson SG; Chan HB
    Nat Commun; 2013; 4():1845. PubMed ID: 23673630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Casimir Effect in MEMS: Materials, Geometries, and Metrologies-A Review.
    Elsaka B; Yang X; Kästner P; Dingel K; Sick B; Lehmann P; Buhmann SY; Hillmer H
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling critical Casimir force induced self-assembly experiments on patchy colloidal dumbbells.
    Newton AC; Nguyen TA; Veen SJ; Kraft DJ; Schall P; Bolhuis PG
    Soft Matter; 2017 Jul; 13(28):4903-4915. PubMed ID: 28643833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of colloidal one-dimensional nanocrystals.
    Zhang SY; Regulacio MD; Han MY
    Chem Soc Rev; 2014 Apr; 43(7):2301-23. PubMed ID: 24413386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the Metallic Crystalline Structure on the Properties of Nanocrystals and Their Mesoscopic Assemblies.
    Pileni MP
    Acc Chem Res; 2017 Aug; 50(8):1946-1955. PubMed ID: 28726381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.