These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 34268846)
1. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
2. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
3. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
4. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification. Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470 [TBL] [Abstract][Full Text] [Related]
6. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification. de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967 [TBL] [Abstract][Full Text] [Related]
7. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Barner AK; Chan F; Hettinger A; Hacker SD; Marshall K; Menge BA Glob Chang Biol; 2018 Oct; 24(10):4464-4477. PubMed ID: 30047188 [TBL] [Abstract][Full Text] [Related]
8. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
9. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. Twist BA; Neill KF; Bilewitch J; Jeong SY; Sutherland JE; Nelson WA PLoS One; 2019; 14(12):e0225645. PubMed ID: 31790447 [TBL] [Abstract][Full Text] [Related]
10. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny. Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764 [TBL] [Abstract][Full Text] [Related]
11. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
12. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
13. Photosynthesis and mineralogy of Jania rubens at low pH/high pCO Porzio L; Buia MC; Ferretti V; Lorenti M; Rossi M; Trifuoggi M; Vergara A; Arena C Sci Total Environ; 2018 Jul; 628-629():375-383. PubMed ID: 29448022 [TBL] [Abstract][Full Text] [Related]
14. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983 [TBL] [Abstract][Full Text] [Related]
15. Impact of ocean acidification and warming on the productivity of a rock pool community. Legrand E; Riera P; Bohner O; Coudret J; Schlicklin F; Derrien M; Martin S Mar Environ Res; 2018 May; 136():78-88. PubMed ID: 29472033 [TBL] [Abstract][Full Text] [Related]
16. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. McCoy SJ; Kamenos NA J Phycol; 2015 Feb; 51(1):6-24. PubMed ID: 26986255 [TBL] [Abstract][Full Text] [Related]
17. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
18. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific. McCoy SJ J Phycol; 2013 Oct; 49(5):830-7. PubMed ID: 27007309 [TBL] [Abstract][Full Text] [Related]
19. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales) Nash MC; Adey W J Phycol; 2017 Oct; 53(5):970-984. PubMed ID: 28671731 [TBL] [Abstract][Full Text] [Related]
20. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]