BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34269565)

  • 1. Synergistic Effect of Chemical Substitution and Insertion on the Thermoelectric Performance of Cu
    Shimizu Y; Suekuni K; Saito H; Lemoine P; Guilmeau E; Raveau B; Chetty R; Ohta M; Takabatake T; Ohtaki M
    Inorg Chem; 2021 Aug; 60(15):11364-11373. PubMed ID: 34269565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.
    Gao H; Zhu T; Zhao X; Deng Y
    Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material.
    Shuai J; Sun Y; Tan X; Mori T
    Small; 2020 Apr; 16(13):e1906921. PubMed ID: 32105400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric performance of ZrNX (X = Cl, Br and I) monolayers.
    Shi W; Ge N; Wang X; Wang Z
    Phys Chem Chem Phys; 2021 Dec; 24(1):560-567. PubMed ID: 34904983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Analysis and Thermoelectric Properties of Cu-Rich Tetrahedrite Prepared by Solvothermal Synthesis.
    Zazakowny K; Kosonowski A; Lis A; Cherniushok O; Parashchuk T; Tobola J; Wojciechowski KT
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doping Copper Selenide for Tuning the Crystal Structure and Thermoelectric Performance of Germanium Telluride-Based Materials.
    Yue L; Bai P; Zheng S
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8327-8335. PubMed ID: 36731875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu
    Jiang Y; Jia F; Chen L; Wu LM
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36616-36625. PubMed ID: 31507161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving a High Thermoelectric Performance of Tetrahedrites by Adjusting the Electronic Density of States and Enhancing Phonon Scattering.
    Huang L; Kong Y; Zhang J; Xu R; Zhu C; Wu J; Jabbar B; Li D; Wang Z; Qin X
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23361-23371. PubMed ID: 31180630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased effective mass and carrier concentration responsible for the improved thermoelectric performance of the nominal compound Cu
    Cui J; Cai G; Ren W
    RSC Adv; 2018 Jun; 8(38):21637-21643. PubMed ID: 35539932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strategy for boosting the thermoelectric performance of famatinite Cu
    Tanishita T; Suekuni K; Nishiate H; Lee CH; Ohtaki M
    Phys Chem Chem Phys; 2020 Jan; 22(4):2081-2086. PubMed ID: 31904070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.
    Srinivasan B; Boussard-Pledel C; Dorcet V; Samanta M; Biswas K; Lefèvre R; Gascoin F; Cheviré F; Tricot S; Reece M; Bureau B
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the structure and thermoelectric properties of Cu
    Mukherjee S; Chetty R; Madduri PVP; Nayak AK; Wojciechowski K; Ghosh T; Chattopadhyay K; Suwas S; Mallik RC
    Dalton Trans; 2019 Jan; 48(3):1040-1050. PubMed ID: 30601531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe)
    Samanta M; Roychowdhury S; Ghatak J; Perumal S; Biswas K
    Chemistry; 2017 Jun; 23(31):7438-7443. PubMed ID: 28436062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials.
    Jiang Y; Dong J; Zhuang HL; Yu J; Su B; Li H; Pei J; Sun FH; Zhou M; Hu H; Li JW; Han Z; Zhang BP; Mori T; Li JF
    Nat Commun; 2022 Oct; 13(1):6087. PubMed ID: 36241619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe
    Deng S; Jiang X; Chen L; Qi N; Tang X; Chen Z
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):868-877. PubMed ID: 33393286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials.
    Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties of zinc-doped Cu
    Sturm C; Macario LR; Mori T; Kleinke H
    Dalton Trans; 2021 May; 50(19):6561-6567. PubMed ID: 33890955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rb(Zn,Cu)
    Ono K; Kihou K; Usui H; Kuroki K; Goto Y; Lee CH
    ACS Omega; 2023 Nov; 8(45):42900-42906. PubMed ID: 38024771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.