BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 34269609)

  • 1. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets.
    Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J
    Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609
    [No Abstract]   [Full Text] [Related]  

  • 2. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling.
    Agarwal S; Lu H; Pillai JJ
    Brain Connect; 2017 Aug; 7(6):382-389. PubMed ID: 28657344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alterations of brain functional connectivity networks in major depressive disorder detected by machine learning through multisite rs-fMRI data.
    Dai P; Xiong T; Zhou X; Ou Y; Li Y; Kui X; Chen Z; Zou B; Li W; Huang Z; The Rest-Meta-Mdd Consortium
    Behav Brain Res; 2022 Oct; 435():114058. PubMed ID: 35995263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beware detrending: Optimal preprocessing pipeline for low-frequency fluctuation analysis.
    Woletz M; Hoffmann A; Tik M; Sladky R; Lanzenberger R; Robinson S; Windischberger C
    Hum Brain Mapp; 2019 Apr; 40(5):1571-1582. PubMed ID: 30430691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for post-traumatic stress disorder identification utilizing resting-state functional magnetic resonance imaging.
    Saba T; Rehman A; Shahzad MN; Latif R; Bahaj SA; Alyami J
    Microsc Res Tech; 2022 Jun; 85(6):2083-2094. PubMed ID: 35088496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percent amplitude of fluctuation: A simple measure for resting-state fMRI signal at single voxel level.
    Jia XZ; Sun JW; Ji GJ; Liao W; Lv YT; Wang J; Wang Z; Zhang H; Liu DQ; Zang YF
    PLoS One; 2020; 15(1):e0227021. PubMed ID: 31914167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder.
    Giménez M; Guinea-Izquierdo A; Villalta-Gil V; Martínez-Zalacaín I; Segalàs C; Subirà M; Real E; Pujol J; Harrison BJ; Haro JM; Sato JR; Hoexter MQ; Cardoner N; Alonso P; Menchón JM; Soriano-Mas C
    Brain Imaging Behav; 2017 Dec; 11(6):1690-1706. PubMed ID: 27771857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI.
    Pang H; Yu Z; Yu H; Cao J; Li Y; Guo M; Cao C; Fan G
    Parkinsonism Relat Disord; 2021 Sep; 90():65-72. PubMed ID: 34399160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect sizes of BOLD CVR, resting-state signal fluctuations and time delay measures for the assessment of hemodynamic impairment in carotid occlusion patients.
    De Vis JB; Bhogal AA; Hendrikse J; Petersen ET; Siero JCW
    Neuroimage; 2018 Oct; 179():530-539. PubMed ID: 29913284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI.
    Campbell JM; Huang Z; Zhang J; Wu X; Qin P; Northoff G; Mashour GA; Hudetz AG
    Neuroimage; 2020 Feb; 206():116316. PubMed ID: 31672663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder.
    Bu X; Hu X; Zhang L; Li B; Zhou M; Lu L; Hu X; Li H; Yang Y; Tang W; Gong Q; Huang X
    Transl Psychiatry; 2019 Jan; 9(1):17. PubMed ID: 30655506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust brain parcellation using sparse representation on resting-state fMRI.
    Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T
    Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Low-Frequency Oscillations to Detect Temporal Lobe Epilepsy with Machine Learning.
    Hwang G; Nair VA; Mathis J; Cook CJ; Mohanty R; Zhao G; Tellapragada N; Ustine C; Nwoke OO; Rivera-Bonet C; Rozman M; Allen L; Forseth C; Almane DN; Kraegel P; Nencka A; Felton E; Struck AF; Birn R; Maganti R; Conant LL; Humphries CJ; Hermann B; Raghavan M; DeYoe EA; Binder JR; Meyerand E; Prabhakaran V
    Brain Connect; 2019 Mar; 9(2):184-193. PubMed ID: 30803273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning in resting-state fMRI analysis.
    Khosla M; Jamison K; Ngo GH; Kuceyeski A; Sabuncu MR
    Magn Reson Imaging; 2019 Dec; 64():101-121. PubMed ID: 31173849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network.
    Akhavan Aghdam M; Sharifi A; Pedram MM
    J Digit Imaging; 2018 Dec; 31(6):895-903. PubMed ID: 29736781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning identifies Parkinson's disease patients based on resting-state between-network functional connectivity.
    Rubbert C; Mathys C; Jockwitz C; Hartmann CJ; Eickhoff SB; Hoffstaedter F; Caspers S; Eickhoff CR; Sigl B; Teichert NA; Südmeyer M; Turowski B; Schnitzler A; Caspers J
    Br J Radiol; 2019 Sep; 92(1101):20180886. PubMed ID: 30994036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex Classification by Resting State Brain Connectivity.
    Weis S; Patil KR; Hoffstaedter F; Nostro A; Yeo BTT; Eickhoff SB
    Cereb Cortex; 2020 Mar; 30(2):824-835. PubMed ID: 31251328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.