These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34269612)
1. Robust Correlation for Link Definition in Resting-State fMRI Brain Networks Can Reduce Motion-Related Artifacts. Burkhardt M; Thiel CM; Gießing C Brain Connect; 2022 Feb; 12(1):18-25. PubMed ID: 34269612 [No Abstract] [Full Text] [Related]
2. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Patel AX; Kundu P; Rubinov M; Jones PS; Vértes PE; Ersche KD; Suckling J; Bullmore ET Neuroimage; 2014 Jul; 95(100):287-304. PubMed ID: 24657353 [TBL] [Abstract][Full Text] [Related]
3. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
5. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR). Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516 [TBL] [Abstract][Full Text] [Related]
6. Combining Prospective Acquisition CorrEction (PACE) with retrospective correction to reduce motion artifacts in resting state fMRI data. Lanka P; Deshpande G Brain Behav; 2019 Aug; 9(8):e01341. PubMed ID: 31297966 [TBL] [Abstract][Full Text] [Related]
7. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215 [TBL] [Abstract][Full Text] [Related]
8. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related]
9. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Yan CG; Cheung B; Kelly C; Colcombe S; Craddock RC; Di Martino A; Li Q; Zuo XN; Castellanos FX; Milham MP Neuroimage; 2013 Aug; 76():183-201. PubMed ID: 23499792 [TBL] [Abstract][Full Text] [Related]
11. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion. Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436 [TBL] [Abstract][Full Text] [Related]
12. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Hallquist MN; Hwang K; Luna B Neuroimage; 2013 Nov; 82():208-25. PubMed ID: 23747457 [TBL] [Abstract][Full Text] [Related]
13. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing. Phạm DĐ; McDonald DJ; Ding L; Nebel MB; Mejia AF Neuroimage; 2023 Apr; 270():119972. PubMed ID: 36842522 [TBL] [Abstract][Full Text] [Related]
15. Reduction of motion-related artifacts in resting state fMRI using aCompCor. Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780 [TBL] [Abstract][Full Text] [Related]
16. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions. Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project. Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276 [TBL] [Abstract][Full Text] [Related]
18. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals. Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629 [No Abstract] [Full Text] [Related]
19. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
20. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity. Kassinopoulos M; Mitsis GD Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]