These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34269612)
21. Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity. Cohen AD; Chang C; Wang Y Neuroimage; 2021 Nov; 243():118555. PubMed ID: 34492293 [TBL] [Abstract][Full Text] [Related]
22. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744 [TBL] [Abstract][Full Text] [Related]
23. Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics. Gotts SJ; Gilmore AW; Martin A Neuroimage; 2020 Jan; 205():116289. PubMed ID: 31629827 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks. Mascali D; Moraschi M; DiNuzzo M; Tommasin S; Fratini M; Gili T; Wise RG; Mangia S; Macaluso E; Giove F Hum Brain Mapp; 2021 Apr; 42(6):1805-1828. PubMed ID: 33528884 [TBL] [Abstract][Full Text] [Related]
25. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. Kaplan S; Meyer D; Miranda-Dominguez O; Perrone A; Earl E; Alexopoulos D; Barch DM; Day TKM; Dust J; Eggebrecht AT; Feczko E; Kardan O; Kenley JK; Rogers CE; Wheelock MD; Yacoub E; Rosenberg M; Elison JT; Fair DA; Smyser CD Neuroimage; 2022 Feb; 247():118838. PubMed ID: 34942363 [TBL] [Abstract][Full Text] [Related]
26. Global signal regression strengthens association between resting-state functional connectivity and behavior. Li J; Kong R; Liégeois R; Orban C; Tan Y; Sun N; Holmes AJ; Sabuncu MR; Ge T; Yeo BTT Neuroimage; 2019 Aug; 196():126-141. PubMed ID: 30974241 [TBL] [Abstract][Full Text] [Related]
27. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI. Graff K; Tansey R; Ip A; Rohr C; Dimond D; Dewey D; Bray S Dev Cogn Neurosci; 2022 Apr; 54():101087. PubMed ID: 35196611 [TBL] [Abstract][Full Text] [Related]
28. Head Motion and Correction Methods in Resting-state Functional MRI. Goto M; Abe O; Miyati T; Yamasue H; Gomi T; Takeda T Magn Reson Med Sci; 2016; 15(2):178-86. PubMed ID: 26701695 [TBL] [Abstract][Full Text] [Related]
30. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
31. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314 [TBL] [Abstract][Full Text] [Related]
32. The impact of image smoothness on intrinsic functional connectivity and head motion confounds. Scheinost D; Papademetris X; Constable RT Neuroimage; 2014 Jul; 95():13-21. PubMed ID: 24657356 [TBL] [Abstract][Full Text] [Related]
33. Aging effect on head motion: A Machine Learning study on resting state fMRI data. Saccà V; Sarica A; Quattrone A; Rocca F; Quattrone A; Novellino F J Neurosci Methods; 2021 Mar; 352():109084. PubMed ID: 33508406 [TBL] [Abstract][Full Text] [Related]
34. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
35. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts. Chen T; Ryali S; Qin S; Menon V Neuroimage; 2013 Nov; 82():87-100. PubMed ID: 23747287 [TBL] [Abstract][Full Text] [Related]
36. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem. Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564 [TBL] [Abstract][Full Text] [Related]
37. Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data. Mahadevan AS; Tooley UA; Bertolero MA; Mackey AP; Bassett DS Neuroimage; 2021 Nov; 241():118408. PubMed ID: 34284108 [TBL] [Abstract][Full Text] [Related]
38. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination. Shirer WR; Jiang H; Price CM; Ng B; Greicius MD Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368 [TBL] [Abstract][Full Text] [Related]
39. Reduction of Motion Artifacts in Functional Connectivity Resulting from Infrequent Large Motion. Birn RM; Dean DC; Wooten W; Planalp EM; Kecskemeti S; Alexander AL; Goldsmith HH; Davidson RJ Brain Connect; 2022 Oct; 12(8):740-753. PubMed ID: 35152725 [No Abstract] [Full Text] [Related]
40. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state. Carbonell F; Bellec P; Shmuel A Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]