These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34269669)

  • 21. Fabrication and preliminary in vitro evaluation of ultraviolet-crosslinked electrospun fish scale gelatin nanofibrous scaffolds.
    Beishenaliev A; Lim SS; Tshai KY; Khiew PS; Moh'd Sghayyar HN; Loh HS
    J Mater Sci Mater Med; 2019 May; 30(6):62. PubMed ID: 31127374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo-crosslinked synthetic biodegradable polymer networks for biomedical applications.
    van Bochove B; Grijpma DW
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):77-106. PubMed ID: 30497347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitosan membranes for tissue engineering: comparison of different crosslinkers.
    Ruini F; Tonda-Turo C; Chiono V; Ciardelli G
    Biomed Mater; 2015 Nov; 10(6):065002. PubMed ID: 26526195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations.
    Wang S; Yaszemski MJ; Knight AM; Gruetzmacher JA; Windebank AJ; Lu L
    Acta Biomater; 2009 Jun; 5(5):1531-42. PubMed ID: 19171506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Animal tissue-derived biomaterials for promoting wound healing.
    Cao X; Lin X; Li N; Zhao X; Zhou M; Zhao Y
    Mater Horiz; 2023 Aug; 10(9):3237-3256. PubMed ID: 37278612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.
    Heo J; Koh RH; Shim W; Kim HD; Yim HG; Hwang NS
    Drug Deliv Transl Res; 2016 Apr; 6(2):148-58. PubMed ID: 25809935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomaterials and controlled release strategy for epithelial wound healing.
    Son YJ; Tse JW; Zhou Y; Mao W; Yim EKF; Yoo HS
    Biomater Sci; 2019 Nov; 7(11):4444-4471. PubMed ID: 31436261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogels as Emerging Materials for Cornea Wound Healing.
    Khosravimelal S; Mobaraki M; Eftekhari S; Ahearne M; Seifalian AM; Gholipourmalekabadi M
    Small; 2021 Jul; 17(30):e2006335. PubMed ID: 33887108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Composite engineered biomaterial adaptable for repair and regeneration of wounds.
    Wu Y; Wagner WD
    Wound Repair Regen; 2021 Mar; 29(2):335-337. PubMed ID: 33428268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitin, chitosan and derivatives for wound healing and tissue engineering.
    Francesko A; Tzanov T
    Adv Biochem Eng Biotechnol; 2011; 125():1-27. PubMed ID: 21072697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel fish collagen scaffold as dural substitute.
    Li Q; Mu L; Zhang F; Sun Y; Chen Q; Xie C; Wang H
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():346-351. PubMed ID: 28866173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The progress in corneal translational medicine.
    Hancox Z; Heidari Keshel S; Yousaf S; Saeinasab M; Shahbazi MA; Sefat F
    Biomater Sci; 2020 Dec; 8(23):6469-6504. PubMed ID: 33174878
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of plant-derived biomaterials for the development of tissue-engineered corneal substitutes.
    Badawy HAE; Osman A; Ahmed TAE; Hincke MT
    J Biomed Mater Res A; 2024 Dec; 112(12):2187-2201. PubMed ID: 38963322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds.
    Fiejdasz S; Szczubiałka K; Lewandowska-Łańcucka J; Osyczka AM; Nowakowska M
    Biomed Mater; 2013 Jun; 8(3):035013. PubMed ID: 23629621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering.
    Li W; Long Y; Liu Y; Long K; Liu S; Wang Z; Wang Y; Ren L
    J Biomater Sci Polym Ed; 2014; 25(17):1962-72. PubMed ID: 25299624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanogels for regenerative medicine.
    Grimaudo MA; Concheiro A; Alvarez-Lorenzo C
    J Control Release; 2019 Nov; 313():148-160. PubMed ID: 31629040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.
    Cattalini JP; Roether J; Hoppe A; Pishbin F; Haro Durand L; Gorustovich A; Boccaccini AR; Lucangioli S; Mouriño V
    Biomed Mater; 2016 Oct; 11(6):065003. PubMed ID: 27767020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.
    Cooke MN; Fisher JP; Dean D; Rimnac C; Mikos AG
    J Biomed Mater Res B Appl Biomater; 2003 Feb; 64(2):65-9. PubMed ID: 12516080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering.
    Romo-Valera C; Guerrero P; Arluzea J; Etxebarria J; de la Caba K; Andollo N
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair.
    Öztürk E; Stauber T; Levinson C; Cavalli E; Arlov Ø; Zenobi-Wong M
    Biomed Mater; 2020 Jun; 15(4):045019. PubMed ID: 32578533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.