These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34270005)

  • 21. Repression of apical homeobox genes is required for embryonic root development in Arabidopsis.
    Grigg SP; Galinha C; Kornet N; Canales C; Scheres B; Tsiantis M
    Curr Biol; 2009 Sep; 19(17):1485-90. PubMed ID: 19646874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stem cells: The root of all cells.
    Terpstra I; Heidstra R
    Semin Cell Dev Biol; 2009 Dec; 20(9):1089-96. PubMed ID: 19772947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auxin Biosynthesis, Accumulation, Action and Transport are Involved in Stress-Induced Microspore Embryogenesis Initiation and Progression in Brassica napus.
    Rodríguez-Sanz H; Solís MT; López MF; Gómez-Cadenas A; Risueño MC; Testillano PS
    Plant Cell Physiol; 2015 Jul; 56(7):1401-17. PubMed ID: 25907568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical-basal axis and typical suspensor formation.
    He YC; He YQ; Qu LH; Sun MX; Yang HY
    Plant J; 2007 Feb; 49(3):515-27. PubMed ID: 17243994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.).
    Dziurka K; Dziurka M; Muszyńska E; Czyczyło-Mysza I; Warchoł M; Juzoń K; Laskoś K; Skrzypek E
    Sci Rep; 2022 Jan; 12(1):548. PubMed ID: 35017602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does Early Embryogenesis in Eudicots and Monocots Involve the Same Mechanism and Molecular Players?
    Zhao P; Begcy K; Dresselhaus T; Sun MX
    Plant Physiol; 2017 Jan; 173(1):130-142. PubMed ID: 27909044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis.
    Suo J; Zhou C; Zeng Z; Li X; Bian H; Wang J; Zhu M; Han N
    BMC Plant Biol; 2021 Mar; 21(1):145. PubMed ID: 33740900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro plant regeneration of Aster scaber via somatic embryogenesis.
    Boo KH; Cao DV; Pamplona RS; Lee D; Riu KZ; Lee DS
    Biosci Biotechnol Biochem; 2015; 79(5):725-31. PubMed ID: 25640866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Green beginnings - pattern formation in the early plant embryo.
    Peris CI; Rademacher EH; Weijers D
    Curr Top Dev Biol; 2010; 91():1-27. PubMed ID: 20705177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patterning the axis in plants--auxin in control.
    De Smet I; Jürgens G
    Curr Opin Genet Dev; 2007 Aug; 17(4):337-43. PubMed ID: 17627808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation.
    Yu P; Eggert K; von Wirén N; Li C; Hochholdinger F
    Plant Physiol; 2015 Sep; 169(1):690-704. PubMed ID: 26198256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant regeneration: cellular origins and molecular mechanisms.
    Ikeuchi M; Ogawa Y; Iwase A; Sugimoto K
    Development; 2016 May; 143(9):1442-51. PubMed ID: 27143753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetry and cell polarity in root development.
    Van Norman JM
    Dev Biol; 2016 Nov; 419(1):165-174. PubMed ID: 27426272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis.
    Seguí-Simarro JM; Nuez F
    Physiol Plant; 2008 Sep; 134(1):1-12. PubMed ID: 18507790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression profiling of shoot-derived calli from adult radiata pine and zygotic embryo-derived embryonal masses.
    Garcia-Mendiguren O; Montalbán IA; Stewart D; Moncaleán P; Klimaszewska K; Rutledge RG
    PLoS One; 2015; 10(6):e0128679. PubMed ID: 26039876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular basis of cytokinin function.
    Perilli S; Moubayidin L; Sabatini S
    Curr Opin Plant Biol; 2010 Feb; 13(1):21-6. PubMed ID: 19850510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental anatomy and branching of roots of four Zeylanidium species (podostemaceae), with implications for evolution of foliose roots.
    Hiyama Y; Tsukamoto I; Imaichi R; Kato M
    Ann Bot; 2002 Dec; 90(6):735-44. PubMed ID: 12451029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endogenous auxin accumulation/localization during zygotic and somatic embryogenesis of Capsicum chinense Jacq.
    Pérez-Pastrana J; Testillano PS; Barany I; Canto-Flick A; Álvarez-López D; Pijeira-Fernández G; Avilés-Viñas SA; Peña-Yam L; Muñoz-Ramírez L; Nahuat-Dzib S; Islas-Flores I; Santana-Buzzy N
    J Plant Physiol; 2021; 258-259():153333. PubMed ID: 33581559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo shoot organogenesis: from art to science.
    Duclercq J; Sangwan-Norreel B; Catterou M; Sangwan RS
    Trends Plant Sci; 2011 Nov; 16(11):597-606. PubMed ID: 21907610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation.
    Shemer O; Landau U; Candela H; Zemach A; Eshed Williams L
    Plant Sci; 2015 Sep; 238():251-61. PubMed ID: 26259192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.