These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34270048)
1. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling. Hsu CC; Arrington JV; Tao WA Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048 [TBL] [Abstract][Full Text] [Related]
2. Universal Plant Phosphoproteomics Workflow and Its Application to Tomato Signaling in Response to Cold Stress. Hsu CC; Zhu Y; Arrington JV; Paez JS; Wang P; Zhu P; Chen IH; Zhu JK; Tao WA Mol Cell Proteomics; 2018 Oct; 17(10):2068-2080. PubMed ID: 30006488 [TBL] [Abstract][Full Text] [Related]
3. TIMAHAC: Streamlined Tandem IMAC-HILIC Workflow for Simultaneous and High-Throughput Plant Phosphoproteomics and N-glycoproteomics. Chen CW; Lin PY; Lai YM; Lin MH; Lin SY; Hsu CC Mol Cell Proteomics; 2024 May; 23(5):100762. PubMed ID: 38608839 [TBL] [Abstract][Full Text] [Related]
4. GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility. Duan X; Zhang Y; Huang X; Ma X; Gao H; Wang Y; Xiao Z; Huang C; Wang Z; Li B; Yang W; Wang Y Mol Plant; 2024 Jan; 17(1):199-213. PubMed ID: 38018035 [TBL] [Abstract][Full Text] [Related]
5. Phosphoproteomic Strategy for Profiling Osmotic Stress Signaling in Arabidopsis. Hsu CC; Tsai CF; Tao WA; Wang P J Vis Exp; 2020 Jun; (160):. PubMed ID: 32658193 [TBL] [Abstract][Full Text] [Related]
6. RUPE-phospho: Rapid Ultrasound-Assisted Peptide-Identification-Enhanced Phosphoproteomics Workflow for Microscale Samples. Huang Y; Shao X; Liu Y; Yan K; Ying W; He F; Wang D Anal Chem; 2023 Dec; 95(49):17974-17980. PubMed ID: 38011496 [TBL] [Abstract][Full Text] [Related]
13. Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software. Li S; Zan H; Zhu Z; Lu D; Krall L Methods Mol Biol; 2021; 2358():179-187. PubMed ID: 34270055 [TBL] [Abstract][Full Text] [Related]
14. Up-to-Date Workflow for Plant (Phospho)proteomics Identifies Differential Drought-Responsive Phosphorylation Events in Maize Leaves. Vu LD; Stes E; Van Bel M; Nelissen H; Maddelein D; Inzé D; Coppens F; Martens L; Gevaert K; De Smet I J Proteome Res; 2016 Dec; 15(12):4304-4317. PubMed ID: 27643528 [TBL] [Abstract][Full Text] [Related]
15. Proteomics and phosphoproteomics of C Perron N; Tan B; Dufresne CP; Chen S Methods Enzymol; 2022; 676():347-368. PubMed ID: 36280357 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics. Robertson J; Humphries JD; Paul NR; Warwood S; Knight D; Byron A; Humphries MJ Methods Mol Biol; 2017; 1636():235-251. PubMed ID: 28730483 [TBL] [Abstract][Full Text] [Related]
17. A Tip-Based Workflow for Sensitive IMAC-Based Low Nanogram Level Phosphoproteomics. Tsai CF; Hsu CC; Wang YT; Kim H; Liu T Methods Mol Biol; 2024; 2823():129-140. PubMed ID: 39052218 [TBL] [Abstract][Full Text] [Related]
18. Quantitative Proteome and Phosphoproteome Profiling in Magnaporthe oryzae. Michna T; Tenzer S Methods Mol Biol; 2021; 2356():109-119. PubMed ID: 34236681 [TBL] [Abstract][Full Text] [Related]
19. Phosphoproteomic Sample Preparation for Global Phosphorylation Profiling of a Fungal Pathogen. Ball B; Krieger JR; Geddes-McAlister J Methods Mol Biol; 2022; 2456():141-151. PubMed ID: 35612740 [TBL] [Abstract][Full Text] [Related]
20. Myoblast Phosphoproteomics as a Tool to Investigate Global Signaling Events During Myogenesis. Jones FK; Hardman GE; Ferries S; Eyers CE; Pisconti A Methods Mol Biol; 2019; 1889():301-317. PubMed ID: 30367422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]