BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34270227)

  • 1. Exploring the Effect of Aliphatic Substituents on Aryl Cyano Amides on Enhancement of Fluorescence upon Binding to Amyloid-β Aggregates.
    Ehrlich RS; Shiao AL; Li M; Teppang KL; Jeoung KY; Theodorakis EA; Yang J
    ACS Chem Neurosci; 2021 Aug; 12(15):2946-2952. PubMed ID: 34270227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Monitoring of Alzheimer's-Related Amyloid Aggregation via Probe Enhancement-Fluorescence Correlation Spectroscopy.
    Guan Y; Cao KJ; Cantlon A; Elbel K; Theodorakis EA; Walsh DM; Yang J; Shah JV
    ACS Chem Neurosci; 2015 Sep; 6(9):1503-8. PubMed ID: 26212450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for
    Fang D; Wen X; Wang Y; Sun Y; An R; Zhou Y; Ye D; Liu H
    Theranostics; 2022; 12(7):3178-3195. PubMed ID: 35547754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Benzothiazole Derivatives as Fluorescent Probes for Detection of β-Amyloid and α-Synuclein Aggregates.
    Watanabe H; Ono M; Ariyoshi T; Katayanagi R; Saji H
    ACS Chem Neurosci; 2017 Aug; 8(8):1656-1662. PubMed ID: 28467708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARCAM-1 Facilitates Fluorescence Detection of Amyloid-Containing Deposits in the Retina.
    Cao KJ; Kim JH; Kroeger H; Gaffney PM; Lin JH; Sigurdson CJ; Yang J
    Transl Vis Sci Technol; 2021 Jun; 10(7):5. PubMed ID: 34096989
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Wu J; Shao C; Ye X; Di X; Li D; Zhao H; Zhang B; Chen G; Liu HK; Qian Y
    ACS Sens; 2021 Mar; 6(3):863-870. PubMed ID: 33438997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Development of Benzothiazole-Based Fluorescent Probes for Selective Detection of Aβ Aggregates in Alzheimer's Disease.
    Mallesh R; Khan J; Pradhan K; Roy R; Jana NR; Jaisankar P; Ghosh S
    ACS Chem Neurosci; 2022 Aug; 13(16):2503-2516. PubMed ID: 35926183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of molecular rotor-based fluorescent probes with bi-aromatic rings for efficient in vivo detection of amyloid-β plaques in Alzheimer's disease.
    Yue N; Fu H; Chen Y; Gao X; Dai J; Cui M
    Eur J Med Chem; 2022 Dec; 243():114715. PubMed ID: 36070630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Fluorescent Probes with Rotatable Polyacetylene Chains for the Detection of Amyloid-β Plaques.
    Zhang L; Gong X; Tian C; Fu H; Tan H; Dai J; Cui M
    J Phys Chem B; 2021 Jan; 125(2):497-506. PubMed ID: 33415984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex Photophysical Properties of K114 Make for a Versatile Fluorescent Probe for Amyloid Detection.
    Stepanchuk AA; Heyne B; Stys PK
    ACS Chem Neurosci; 2021 Apr; 12(7):1273-1280. PubMed ID: 33705095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent 2-styrylpyridazin-3(2H)-one derivatives as probes targeting amyloid-beta plaques in Alzheimer's disease.
    Park YD; Park JH; Hur MG; Kim SW; Min JJ; Park SH; Yoo YJ; Yoon YJ; Yang SD
    Bioorg Med Chem Lett; 2012 Jun; 22(12):4106-10. PubMed ID: 22578456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence Chemicals To Detect Insoluble and Soluble Amyloid-β Aggregates.
    Lee D; Kim SM; Kim HY; Kim Y
    ACS Chem Neurosci; 2019 Jun; 10(6):2647-2657. PubMed ID: 31009195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel fluorescence probes based on the chalcone scaffold for in vitro staining of β-amyloid plaques.
    Watanabe H; Saji H; Ono M
    Bioorg Med Chem Lett; 2018 Oct; 28(19):3242-3246. PubMed ID: 30131243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BODIPY Dyes as Probes and Sensors to Study Amyloid-β-Related Processes.
    Dzyuba SV
    Biosensors (Basel); 2020 Nov; 10(12):. PubMed ID: 33260945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Coumarin-Based Fluorescent Probe for Efficient
    Cao Y; Liu X; Zhang J; Liu Z; Fu Y; Zhang D; Zheng M; Zhang H; Xu MH
    ACS Chem Neurosci; 2023 Mar; 14(5):829-838. PubMed ID: 36749171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Turn-On" Quinoline-Based Fluorescent Probe for Selective Imaging of Tau Aggregates in Alzheimer's Disease: Rational Design, Synthesis, and Molecular Docking.
    Elbatrawy AA; Hyeon SJ; Yue N; Osman EEA; Choi SH; Lim S; Kim YK; Ryu H; Cui M; Nam G
    ACS Sens; 2021 Jun; 6(6):2281-2289. PubMed ID: 34115933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-triggered dissociation of self-assembled β-amyloid aggregates into small, nontoxic fragments by ruthenium (II) complex.
    Son G; Lee BI; Chung YJ; Park CB
    Acta Biomater; 2018 Feb; 67():147-155. PubMed ID: 29221856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of fluorescent probes that bind and stain amyloid plaques in Alzheimer's disease.
    Jung SJ; Park SH; Lee EJ; Park JH; Kong YB; Rho JK; Hur MG; Yang SD; Park YD
    Arch Pharm Res; 2015 Nov; 38(11):1992-8. PubMed ID: 26012373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Methyl Mesoporphyrin IX as an Effective Probe for Monitoring Alzheimer's Disease β-Amyloid Aggregation in Living Cells.
    Li M; Zhao A; Ren J; Qu X
    ACS Chem Neurosci; 2017 Jun; 8(6):1299-1304. PubMed ID: 28281745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation.
    Kim S; Lee HJ; Nam E; Jeong D; Cho J; Lim MH; You Y
    ACS Omega; 2018 May; 3(5):5141-5154. PubMed ID: 31458729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.