BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3427023)

  • 1. Characterization of cardiac calsequestrin.
    Slupsky JR; Ohnishi M; Carpenter MR; Reithmeier RA
    Biochemistry; 1987 Oct; 26(20):6539-44. PubMed ID: 3427023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation of rabbit skeletal muscle calsequestrin: spectral and ion binding properties of the carboxyl-terminal region.
    Ohnishi M; Reithmeier RA
    Biochemistry; 1987 Nov; 26(23):7458-65. PubMed ID: 3427087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcoplasmic reticulum calsequestrins: structural and functional properties.
    Yano K; Zarain-Herzberg A
    Mol Cell Biochem; 1994 Jun; 135(1):61-70. PubMed ID: 7816057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size and shape of rabbit skeletal muscle calsequestrin.
    Cozens B; Reithmeier RA
    J Biol Chem; 1984 May; 259(10):6248-52. PubMed ID: 6725251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning.
    Scott BT; Simmerman HK; Collins JH; Nadal-Ginard B; Jones LR
    J Biol Chem; 1988 Jun; 263(18):8958-64. PubMed ID: 3379055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose.
    Cala SE; Jones LR
    J Biol Chem; 1983 Oct; 258(19):11932-6. PubMed ID: 6619149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terbium-binding properties of calsequestrin from skeletal muscle sarcoplasmic reticulum.
    Ohnishi M; Reithmeier RA
    Biochim Biophys Acta; 1987 Sep; 915(2):180-7. PubMed ID: 3651471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. Demonstration of a cluster of unique rapidly phosphorylated sites in cardiac calsequestrin.
    Cala SE; Jones LR
    J Biol Chem; 1991 Jan; 266(1):391-8. PubMed ID: 1985907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.
    Park H; Park IY; Kim E; Youn B; Fields K; Dunker AK; Kang C
    J Biol Chem; 2004 Apr; 279(17):18026-33. PubMed ID: 14871888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frog cardiac calsequestrin. Identification, characterization, and subcellular distribution in two structurally distinct regions of peripheral sarcoplasmic reticulum in frog ventricular myocardium.
    McLeod AG; Shen AC; Campbell KP; Michalak M; Jorgensen AO
    Circ Res; 1991 Aug; 69(2):344-59. PubMed ID: 1860177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum.
    Jones LR; Zhang L; Sanborn K; Jorgensen AO; Kelley J
    J Biol Chem; 1995 Dec; 270(51):30787-96. PubMed ID: 8530521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.
    He Z; Dunker AK; Wesson CR; Trumble WR
    J Biol Chem; 1993 Nov; 268(33):24635-41. PubMed ID: 8227022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle.
    Fliegel L; Leberer E; Green NM; MacLennan DH
    FEBS Lett; 1989 Jan; 242(2):297-300. PubMed ID: 2914612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein.
    Campbell KP; MacLennan DH; Jorgensen AO; Mintzer MC
    J Biol Chem; 1983 Jan; 258(2):1197-204. PubMed ID: 6337133
    [No Abstract]   [Full Text] [Related]  

  • 16. Purification and characterization of a calsequestrin-like calcium-binding protein from carp (Cyprinus carpio) sarcoplasmic reticulum.
    Watabe S; Ushio H; Hashimoto K
    Comp Biochem Physiol B; 1991; 99(3):545-52. PubMed ID: 1769203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of skeletal muscle calsequestrin: comparison of mammalian, amphibian and avian muscles.
    Damiani E; Salvatori S; Zorzato F; Margreth A
    J Muscle Res Cell Motil; 1986 Oct; 7(5):435-45. PubMed ID: 3491835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for the isolation of calsequestrin from porcine skeletal muscle sarcoplasmic reticulum.
    White MD; Thomas CR; Denborough MA
    Biochim Biophys Acta; 1983 Apr; 744(1):1-6. PubMed ID: 6219708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual role of calsequestrin as substrate and inhibitor of casein kinase-1 and casein kinase-2.
    Salvatori S; Furlan S; Meggio F
    Biochem Biophys Res Commun; 1994 Jan; 198(1):144-9. PubMed ID: 8292016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization and molecular cloning of cardiac triadin.
    Guo W; Jorgensen AO; Jones LR; Campbell KP
    J Biol Chem; 1996 Jan; 271(1):458-65. PubMed ID: 8550602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.