These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34270290)

  • 1. Prospects of a Pb^{2+} Ion Clock.
    Beloy K
    Phys Rev Lett; 2021 Jul; 127(1):013201. PubMed ID: 34270290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadruply Ionized Barium as a Candidate for a High-Accuracy Optical Clock.
    Beloy K; Dzuba VA; Brewer SM
    Phys Rev Lett; 2020 Oct; 125(17):173002. PubMed ID: 33156679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects of a thousand-ion Sn
    Leibrandt DR; Porsev SG; Cheung C; Safronova MS
    Nat Commun; 2024 Jul; 15(1):5663. PubMed ID: 38969633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 6S(0)-6P(0) transition in thallium isotope ion Tl: A superior atomic clock.
    Dehmelt H; Yu N; Nagourney W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3938. PubMed ID: 16594046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 31S0-33P0 transition in the aluminum isotope ion 26A1+: a potentially superior passive laser frequency standard and spectrum analyzer.
    Yu N; Dehmelt H; Nagourney W
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7289. PubMed ID: 11607314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trap-Induced ac Zeeman Shift of the Thorium-229 Nuclear Clock Frequency.
    Beloy K
    Phys Rev Lett; 2023 Mar; 130(10):103201. PubMed ID: 36962041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadrupole Shift Cancellation Using Dynamic Decoupling.
    Shaniv R; Akerman N; Manovitz T; Shapira Y; Ozeri R
    Phys Rev Lett; 2019 Jun; 122(22):223204. PubMed ID: 31283290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stark shift of the Cs clock transition frequency: a new experimental approach.
    Robyr JL; Knowles P; Weis A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ^{27}Al^{+} Quantum-Logic Clock with a Systematic Uncertainty below 10^{-18}.
    Brewer SM; Chen JS; Hankin AM; Clements ER; Chou CW; Wineland DJ; Hume DB; Leibrandt DR
    Phys Rev Lett; 2019 Jul; 123(3):033201. PubMed ID: 31386450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. External-Field Shifts of the (199)Hg(+) Optical Frequency Standard.
    Itano WM
    J Res Natl Inst Stand Technol; 2000; 105(6):829-37. PubMed ID: 27551639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a ^{88}Sr^{+} Optical Clock with a Direct Measurement of the Blackbody Radiation Shift and Determination of the Clock Frequency.
    Steinel M; Shao H; Filzinger M; Lipphardt B; Brinkmann M; Didier A; Mehlstäubler TE; Lindvall T; Peik E; Huntemann N
    Phys Rev Lett; 2023 Aug; 131(8):083002. PubMed ID: 37683165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-accuracy measurement of atomic polarizability in an optical lattice clock.
    Sherman JA; Lemke ND; Hinkley N; Pizzocaro M; Fox RW; Ludlow AD; Oates CW
    Phys Rev Lett; 2012 Apr; 108(15):153002. PubMed ID: 22587248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty Evaluation of an
    Kobayashi T; Akamatsu D; Hisai Y; Tanabe T; Inaba H; Suzuyama T; Hong FL; Hosaka K; Yasuda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2449-2458. PubMed ID: 30235125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.
    Huntemann N; Sanner C; Lipphardt B; Tamm C; Peik E
    Phys Rev Lett; 2016 Feb; 116(6):063001. PubMed ID: 26918984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magic radio-frequency dressing of nuclear spins in high-accuracy optical clocks.
    Zanon-Willette T; de Clercq E; Arimondo E
    Phys Rev Lett; 2012 Nov; 109(22):223003. PubMed ID: 23368116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect.
    Dubé P; Madej AA; Tibbo M; Bernard JE
    Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate measurement of the 12.6 GHz "clock" transition in trapped (171)Yb(+) ions.
    Fisk PH; Sellars MJ; Lawn MA; Coles G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):344-54. PubMed ID: 18244132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.