These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Experimental realization of a 2 × 2 polarization-independent split-ratio-tunable optical beam splitter. Yang R; Li J; Song XB; Gao T; Li YR; Zhang YJ; Chen XX; Gong YX Opt Express; 2016 Dec; 24(25):28519-28528. PubMed ID: 27958496 [TBL] [Abstract][Full Text] [Related]
5. Frequency-domain Hong-Ou-Mandel interference with linear optics. Imany P; Odele OD; Alshaykh MS; Lu HH; Leaird DE; Weiner AM Opt Lett; 2018 Jun; 43(12):2760-2763. PubMed ID: 29905682 [TBL] [Abstract][Full Text] [Related]
6. The origin of anticorrelation for photon bunching on a beam splitter. Ham BS Sci Rep; 2020 Apr; 10(1):7309. PubMed ID: 32355259 [TBL] [Abstract][Full Text] [Related]
7. X-ray ghost imaging with a specially developed beam splitter. Zhao CZ; Zhang HP; Tang J; Zhao NX; Li ZL; Xiao TQ J Synchrotron Radiat; 2024 Nov; ():. PubMed ID: 39347700 [TBL] [Abstract][Full Text] [Related]
8. Photon beams for radiosurgery produced by laser Compton backscattering from relativistic electrons. Girolami B; Larsson B; Preger M; Schaerf C; Stepanek J Phys Med Biol; 1996 Sep; 41(9):1581-96. PubMed ID: 8884899 [TBL] [Abstract][Full Text] [Related]
9. Quantum Delayed-Choice Experiment with a Beam Splitter in a Quantum Superposition. Zheng SB; Zhong YP; Xu K; Wang QJ; Wang H; Shen LT; Yang CP; Martinis JM; Cleland AN; Han SY Phys Rev Lett; 2015 Dec; 115(26):260403. PubMed ID: 26764976 [TBL] [Abstract][Full Text] [Related]
11. Quantum entanglement and statistics of photons on a beam splitter in the form of coupled waveguides. Makarov DN; Gusarevich ES; Goshev AA; Makarova KA; Kapustin SN; Kharlamova AA; Tsykareva YV Sci Rep; 2021 May; 11(1):10274. PubMed ID: 33986464 [TBL] [Abstract][Full Text] [Related]
12. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Lvovsky AI; Mlynek J Phys Rev Lett; 2002 Jun; 88(25 Pt 1):250401. PubMed ID: 12097076 [TBL] [Abstract][Full Text] [Related]
13. Quantum beat of two single photons. Legero T; Wilk T; Hennrich M; Rempe G; Kuhn A Phys Rev Lett; 2004 Aug; 93(7):070503. PubMed ID: 15324220 [TBL] [Abstract][Full Text] [Related]
14. Quantum interference between two single photons emitted by independently trapped atoms. Beugnon J; Jones MP; Dingjan J; Darquié B; Messin G; Browaeys A; Grangier P Nature; 2006 Apr; 440(7085):779-82. PubMed ID: 16598253 [TBL] [Abstract][Full Text] [Related]
15. High-Rate, High-Fidelity Entanglement of Qubits Across an Elementary Quantum Network. Stephenson LJ; Nadlinger DP; Nichol BC; An S; Drmota P; Ballance TG; Thirumalai K; Goodwin JF; Lucas DM; Ballance CJ Phys Rev Lett; 2020 Mar; 124(11):110501. PubMed ID: 32242699 [TBL] [Abstract][Full Text] [Related]
16. Hanbury brown and twiss-type experiment with electrons. Oliver WD; Kim J; Liu RC; Yamamoto Y Science; 1999 Apr; 284(5412):299-301. PubMed ID: 10195891 [TBL] [Abstract][Full Text] [Related]
17. Electro-mechanical control of an on-chip optical beam splitter containing an embedded quantum emitter. Bishop ZK; Foster AP; Royall B; Bentham C; Clarke E; Skolnick MS; Wilson LR Opt Lett; 2018 May; 43(9):2142-2145. PubMed ID: 29714766 [TBL] [Abstract][Full Text] [Related]
18. A bridge between the single-photon and squeezed-vacuum states. Jain N; Huisman SR; Bimbard E; Lvovsky AI Opt Express; 2010 Aug; 18(17):18254-9. PubMed ID: 20721217 [TBL] [Abstract][Full Text] [Related]
19. Exploring the fundamental limits of integrated beam splitters with arbitrary phase via topology optimization. Nanda A; Kues M; Calà Lesina A Opt Lett; 2024 Mar; 49(5):1125-1128. PubMed ID: 38426954 [TBL] [Abstract][Full Text] [Related]
20. A high-speed tunable beam splitter for feed-forward photonic quantum information processing. Ma XS; Zotter S; Tetik N; Qarry A; Jennewein T; Zeilinger A Opt Express; 2011 Nov; 19(23):22723-30. PubMed ID: 22109153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]